| L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.623 − 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.623 + 0.781i)5-s + (−0.623 + 0.781i)6-s + (0.623 + 0.781i)7-s + (0.623 + 0.781i)8-s + (−0.222 + 0.974i)9-s + (0.900 + 0.433i)10-s + (−0.900 − 0.433i)11-s + (0.900 + 0.433i)12-s + (0.623 + 0.781i)13-s + (0.623 − 0.781i)14-s + 15-s + (0.623 − 0.781i)16-s + (0.222 + 0.974i)17-s + ⋯ |
| L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.623 − 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.623 + 0.781i)5-s + (−0.623 + 0.781i)6-s + (0.623 + 0.781i)7-s + (0.623 + 0.781i)8-s + (−0.222 + 0.974i)9-s + (0.900 + 0.433i)10-s + (−0.900 − 0.433i)11-s + (0.900 + 0.433i)12-s + (0.623 + 0.781i)13-s + (0.623 − 0.781i)14-s + 15-s + (0.623 − 0.781i)16-s + (0.222 + 0.974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5101833271 + 0.06425107790i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5101833271 + 0.06425107790i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6040773311 - 0.1484669171i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6040773311 - 0.1484669171i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 113 | \( 1 \) |
| good | 2 | \( 1 + (-0.222 - 0.974i)T \) |
| 3 | \( 1 + (-0.623 - 0.781i)T \) |
| 5 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.900 - 0.433i)T \) |
| 13 | \( 1 + (0.623 + 0.781i)T \) |
| 17 | \( 1 + (0.222 + 0.974i)T \) |
| 19 | \( 1 + (-0.623 - 0.781i)T \) |
| 23 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (0.222 + 0.974i)T \) |
| 31 | \( 1 + (0.623 + 0.781i)T \) |
| 37 | \( 1 + (0.900 + 0.433i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.222 + 0.974i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (-0.900 + 0.433i)T \) |
| 59 | \( 1 + (-0.623 - 0.781i)T \) |
| 61 | \( 1 + (-0.900 - 0.433i)T \) |
| 67 | \( 1 + (0.900 + 0.433i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.900 - 0.433i)T \) |
| 83 | \( 1 + (-0.222 - 0.974i)T \) |
| 89 | \( 1 + (0.222 - 0.974i)T \) |
| 97 | \( 1 + (0.623 - 0.781i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.856085164898033601957953621172, −27.953245779717720355792640405896, −27.27172669417520494227082605621, −26.52402789140678239347673602148, −25.26461969155966790419035537983, −24.02087613838893608312060251865, −23.27796987370604159322580188094, −22.67014722860524989161101086794, −20.91365632003452307150716002165, −20.33669399919777836654004330679, −18.55597932632943472025290112999, −17.51265519281006265577928701288, −16.654257067774551127083112233181, −15.81789519308857650773190790783, −15.01902003349489031901827669252, −13.611692826755421608757803271215, −12.2915113865245868668851189721, −10.794520430175343623411487529866, −9.86668342789835872410138871970, −8.41212438679860734891700653349, −7.57350678080682693288684582806, −5.892108631191764175736873713876, −4.80356096795557230529059717707, −4.02872974661498453122376795697, −0.611910591804225311388793995074,
1.69765266620610753719563248528, 2.98284348311308295013408906591, 4.69744463390995430607118594718, 6.17195493479657481984635121956, 7.7695110178318869242987824459, 8.6008307076573533503106841877, 10.54706105185997845936924901392, 11.25668996930937671794206309737, 12.0491716185152337126336760659, 13.18526225827356994076952738661, 14.34608671245380886928422131563, 15.85501234065080337107362382225, 17.36897575517635820568344644033, 18.36641594652495820384711608570, 18.82012575380104635520995591943, 19.796924564645826135125609396065, 21.50266672085194320551418917490, 21.90815339924964622504123864336, 23.56211500430522833404191924843, 23.63641173866907261395379025097, 25.55024421042967222477888893497, 26.54318244713965128535572120065, 27.809138852988635727699107224120, 28.358456911260555058798911897272, 29.42497666430506059425539305507