| L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.974 − 0.222i)3-s + (0.623 − 0.781i)4-s + (−0.974 + 0.222i)5-s + (0.974 − 0.222i)6-s + (−0.222 + 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.900 + 0.433i)9-s + (0.781 − 0.623i)10-s + (−0.623 − 0.781i)11-s + (−0.781 + 0.623i)12-s + (0.222 − 0.974i)13-s + (−0.222 − 0.974i)14-s + 15-s + (−0.222 − 0.974i)16-s + (−0.433 − 0.900i)17-s + ⋯ |
| L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.974 − 0.222i)3-s + (0.623 − 0.781i)4-s + (−0.974 + 0.222i)5-s + (0.974 − 0.222i)6-s + (−0.222 + 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.900 + 0.433i)9-s + (0.781 − 0.623i)10-s + (−0.623 − 0.781i)11-s + (−0.781 + 0.623i)12-s + (0.222 − 0.974i)13-s + (−0.222 − 0.974i)14-s + 15-s + (−0.222 − 0.974i)16-s + (−0.433 − 0.900i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.675 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.675 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3022436065 - 0.1329065737i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3022436065 - 0.1329065737i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4303997469 + 0.002723265735i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4303997469 + 0.002723265735i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 113 | \( 1 \) |
| good | 2 | \( 1 + (-0.900 + 0.433i)T \) |
| 3 | \( 1 + (-0.974 - 0.222i)T \) |
| 5 | \( 1 + (-0.974 + 0.222i)T \) |
| 7 | \( 1 + (-0.222 + 0.974i)T \) |
| 11 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (0.222 - 0.974i)T \) |
| 17 | \( 1 + (-0.433 - 0.900i)T \) |
| 19 | \( 1 + (0.974 + 0.222i)T \) |
| 23 | \( 1 + (0.974 - 0.222i)T \) |
| 29 | \( 1 + (-0.433 - 0.900i)T \) |
| 31 | \( 1 + (0.222 - 0.974i)T \) |
| 37 | \( 1 + (0.781 - 0.623i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 43 | \( 1 + (0.433 + 0.900i)T \) |
| 47 | \( 1 + (-0.781 - 0.623i)T \) |
| 53 | \( 1 + (0.623 - 0.781i)T \) |
| 59 | \( 1 + (0.974 + 0.222i)T \) |
| 61 | \( 1 + (-0.623 - 0.781i)T \) |
| 67 | \( 1 + (-0.781 + 0.623i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.781 + 0.623i)T \) |
| 83 | \( 1 + (-0.900 + 0.433i)T \) |
| 89 | \( 1 + (0.433 - 0.900i)T \) |
| 97 | \( 1 + (-0.222 - 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.932955094815012191805561076029, −28.661092394130916666361677264399, −27.46543336758437219760371474612, −26.76361777158076072433868678668, −25.90870869064162153626594923169, −24.130657954882078233455527171282, −23.449074134411566675095300685525, −22.32412175617748517836995505941, −21.03781161936140757585818232893, −20.13517823874862158031729883896, −19.11247404757848400298452313465, −18.00298233282695255048291660295, −16.96783501308285393221406195197, −16.22600357910638234157284272983, −15.307586388688464303131403423102, −13.09909131052129630904358691652, −12.10990857536681048579194563108, −11.10822475079864640831829729985, −10.34906121237621720442565990845, −9.061813077507121348538020846523, −7.484194021848572010384054755844, −6.80741971669441690520349606994, −4.68869874035235033528750318053, −3.583326688251466904499409201742, −1.25134712341633914917737029856,
0.55707703020588658028638297311, 2.80904545625822780577414448693, 5.135296385250652831267787655422, 6.08663939047617456104752348868, 7.38443164911854939095293093521, 8.31103678049257014300193014911, 9.791240738803188331498738912915, 11.14949790742663824734131234376, 11.64359781222628677157225104118, 13.099542829752945853438325303071, 15.07850616093973727393149716059, 15.835015725310596163375304877027, 16.535309844433008656542624981928, 18.08170944131423426224151758558, 18.50888449188568678627365504104, 19.474075778979570169617846524677, 20.86213601436264328299417547492, 22.449042397022903243082684171857, 23.14014462939028173527098551411, 24.37010501798592585760341583952, 24.91681188348203661810065914754, 26.51329084352762349815415385060, 27.25526252463074399468252012383, 28.14743807808525589975037414283, 28.90450958308422437000613630363