| L(s) = 1 | + (0.623 + 0.781i)2-s + (0.433 + 0.900i)3-s + (−0.222 + 0.974i)4-s + (0.433 − 0.900i)5-s + (−0.433 + 0.900i)6-s + (−0.900 + 0.433i)7-s + (−0.900 + 0.433i)8-s + (−0.623 + 0.781i)9-s + (0.974 − 0.222i)10-s + (0.222 + 0.974i)11-s + (−0.974 + 0.222i)12-s + (0.900 − 0.433i)13-s + (−0.900 − 0.433i)14-s + 15-s + (−0.900 − 0.433i)16-s + (0.781 − 0.623i)17-s + ⋯ |
| L(s) = 1 | + (0.623 + 0.781i)2-s + (0.433 + 0.900i)3-s + (−0.222 + 0.974i)4-s + (0.433 − 0.900i)5-s + (−0.433 + 0.900i)6-s + (−0.900 + 0.433i)7-s + (−0.900 + 0.433i)8-s + (−0.623 + 0.781i)9-s + (0.974 − 0.222i)10-s + (0.222 + 0.974i)11-s + (−0.974 + 0.222i)12-s + (0.900 − 0.433i)13-s + (−0.900 − 0.433i)14-s + 15-s + (−0.900 − 0.433i)16-s + (0.781 − 0.623i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.426 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.426 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8101157886 + 1.276959639i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8101157886 + 1.276959639i\) |
| \(L(1)\) |
\(\approx\) |
\(1.123696071 + 0.9531271116i\) |
| \(L(1)\) |
\(\approx\) |
\(1.123696071 + 0.9531271116i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 113 | \( 1 \) |
| good | 2 | \( 1 + (0.623 + 0.781i)T \) |
| 3 | \( 1 + (0.433 + 0.900i)T \) |
| 5 | \( 1 + (0.433 - 0.900i)T \) |
| 7 | \( 1 + (-0.900 + 0.433i)T \) |
| 11 | \( 1 + (0.222 + 0.974i)T \) |
| 13 | \( 1 + (0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.781 - 0.623i)T \) |
| 19 | \( 1 + (-0.433 - 0.900i)T \) |
| 23 | \( 1 + (-0.433 + 0.900i)T \) |
| 29 | \( 1 + (0.781 - 0.623i)T \) |
| 31 | \( 1 + (0.900 - 0.433i)T \) |
| 37 | \( 1 + (0.974 - 0.222i)T \) |
| 41 | \( 1 + (0.222 - 0.974i)T \) |
| 43 | \( 1 + (-0.781 + 0.623i)T \) |
| 47 | \( 1 + (-0.974 - 0.222i)T \) |
| 53 | \( 1 + (-0.222 + 0.974i)T \) |
| 59 | \( 1 + (-0.433 - 0.900i)T \) |
| 61 | \( 1 + (0.222 + 0.974i)T \) |
| 67 | \( 1 + (-0.974 + 0.222i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.974 + 0.222i)T \) |
| 83 | \( 1 + (0.623 + 0.781i)T \) |
| 89 | \( 1 + (-0.781 - 0.623i)T \) |
| 97 | \( 1 + (-0.900 - 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.360405157829563073412871670802, −28.58261035548461583832662532718, −26.90903050008990524925107312916, −25.91019763496120485261758720079, −24.93390323859018130777881351664, −23.56276931161458839542216225616, −23.02365099871812499267272900460, −21.825399947013906102697686739342, −20.83163694627757978895154128931, −19.51734060996232874643916926601, −18.93578855338510848986086537222, −18.14386239455940316080203580918, −16.45057852413289575633742667139, −14.73582878151826496929331036857, −13.96771858101706571926446357149, −13.23586079205767869347436298340, −12.11740217528544813848152580585, −10.85332047232672983744466447914, −9.84366023156139856200575793831, −8.38401947299444151594409415780, −6.44937637737470397871871389163, −6.16660535110317867077715378706, −3.68885800690569584888790928495, −2.92008632210569385144528559175, −1.38817470064942813335623970453,
2.72303508472264126792799780557, 4.08009300518996167561798167051, 5.161121125397502621402009422260, 6.22906092292713241056374838510, 7.95745236288993863810747382461, 9.092514993947361574590801418165, 9.84414477697225641841713774593, 11.84704721480515690866377026125, 13.03347568247676139441853177551, 13.83103231472277541333147108907, 15.25187312549143001284524757661, 15.86037172502624748085394422598, 16.77892803595150989551750225159, 17.850775829005210176781937829841, 19.694800996570982847892811306464, 20.74769907612496258198857864502, 21.50542832164694576110813360146, 22.55365974447916635827130968623, 23.41852079097124341717682341538, 25.0665819068618914418167320620, 25.38471055296460488673362096209, 26.24136937016266052543130968425, 27.71795734123194020912281300278, 28.35169999614840081921486879105, 29.90930748135142364398587056519