L(s) = 1 | + (0.929 + 0.368i)3-s + (0.309 − 0.951i)7-s + (0.728 + 0.684i)9-s + (−0.876 − 0.481i)11-s + (−0.728 − 0.684i)13-s + (0.535 − 0.844i)17-s + (0.929 − 0.368i)19-s + (0.637 − 0.770i)21-s + (−0.992 + 0.125i)23-s + (0.425 + 0.904i)27-s + (−0.968 + 0.248i)29-s + (0.535 − 0.844i)31-s + (−0.637 − 0.770i)33-s + (0.425 − 0.904i)37-s + (−0.425 − 0.904i)39-s + ⋯ |
L(s) = 1 | + (0.929 + 0.368i)3-s + (0.309 − 0.951i)7-s + (0.728 + 0.684i)9-s + (−0.876 − 0.481i)11-s + (−0.728 − 0.684i)13-s + (0.535 − 0.844i)17-s + (0.929 − 0.368i)19-s + (0.637 − 0.770i)21-s + (−0.992 + 0.125i)23-s + (0.425 + 0.904i)27-s + (−0.968 + 0.248i)29-s + (0.535 − 0.844i)31-s + (−0.637 − 0.770i)33-s + (0.425 − 0.904i)37-s + (−0.425 − 0.904i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.627158636 - 0.9485503294i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.627158636 - 0.9485503294i\) |
\(L(1)\) |
\(\approx\) |
\(1.365744994 - 0.2126684857i\) |
\(L(1)\) |
\(\approx\) |
\(1.365744994 - 0.2126684857i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.929 + 0.368i)T \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-0.876 - 0.481i)T \) |
| 13 | \( 1 + (-0.728 - 0.684i)T \) |
| 17 | \( 1 + (0.535 - 0.844i)T \) |
| 19 | \( 1 + (0.929 - 0.368i)T \) |
| 23 | \( 1 + (-0.992 + 0.125i)T \) |
| 29 | \( 1 + (-0.968 + 0.248i)T \) |
| 31 | \( 1 + (0.535 - 0.844i)T \) |
| 37 | \( 1 + (0.425 - 0.904i)T \) |
| 41 | \( 1 + (-0.992 - 0.125i)T \) |
| 43 | \( 1 + (0.809 + 0.587i)T \) |
| 47 | \( 1 + (0.0627 - 0.998i)T \) |
| 53 | \( 1 + (0.637 - 0.770i)T \) |
| 59 | \( 1 + (0.187 + 0.982i)T \) |
| 61 | \( 1 + (0.992 - 0.125i)T \) |
| 67 | \( 1 + (-0.968 - 0.248i)T \) |
| 71 | \( 1 + (0.0627 - 0.998i)T \) |
| 73 | \( 1 + (-0.187 + 0.982i)T \) |
| 79 | \( 1 + (-0.929 - 0.368i)T \) |
| 83 | \( 1 + (0.929 - 0.368i)T \) |
| 89 | \( 1 + (-0.187 + 0.982i)T \) |
| 97 | \( 1 + (0.968 - 0.248i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.67902411116616599496357699478, −20.89519623416321138552495496729, −20.31844209430406012704807060917, −19.3294566271235917243203418678, −18.705637029921313710008440945928, −18.13886715331512841259570285389, −17.232882841887103349120902752520, −16.04115458041082434686869102881, −15.36721530878829384911181920064, −14.623064941050395298235779358463, −14.02373205360309718849903717067, −13.00429540866013658278984448752, −12.274496433725375637053637561481, −11.70707705356118404522639212899, −10.2455252722185914773869097563, −9.66275664583466612324118865584, −8.731182992542668981918075167625, −7.9545208358961038613673442875, −7.35440436951866580598289789765, −6.20258180545140877917696716756, −5.247643878348286166309482263, −4.23157256764699508851128866194, −3.107575990984630238467231480889, −2.26315635474437840253281345917, −1.529479310136035170203286176925,
0.69647777797303111843404680288, 2.14170743433918059927082918687, 3.03491974605182855429892001880, 3.84672603423977393599794109901, 4.87439756172974240082740127490, 5.60799237526358747674395152313, 7.29692650531977407466631528047, 7.59154512596397256661065471416, 8.413404605286830953290789207354, 9.6008705212266953044427361926, 10.08551238828430872975655804188, 10.915497198039126715299077004848, 11.90730673605403139980513859220, 13.15866663631308675709151701367, 13.5893273285959107621830371447, 14.38930828728152034507321392640, 15.11643855760573142379129526180, 16.0650616685356493494602490809, 16.56107766550036276319996918194, 17.7323587860071778333130631598, 18.42252188749181038686394559658, 19.36100819859515313380831026013, 20.18877509411739212838460594712, 20.54483142886392905762457130849, 21.359500326185996625434351397987