L(s) = 1 | + (0.684 + 0.728i)3-s + (−0.587 − 0.809i)7-s + (−0.0627 + 0.998i)9-s + (0.535 − 0.844i)11-s + (−0.998 − 0.0627i)13-s + (0.904 + 0.425i)17-s + (−0.728 − 0.684i)19-s + (0.187 − 0.982i)21-s + (0.248 − 0.968i)23-s + (−0.770 + 0.637i)27-s + (0.876 + 0.481i)29-s + (0.425 − 0.904i)31-s + (0.982 − 0.187i)33-s + (−0.770 − 0.637i)37-s + (−0.637 − 0.770i)39-s + ⋯ |
L(s) = 1 | + (0.684 + 0.728i)3-s + (−0.587 − 0.809i)7-s + (−0.0627 + 0.998i)9-s + (0.535 − 0.844i)11-s + (−0.998 − 0.0627i)13-s + (0.904 + 0.425i)17-s + (−0.728 − 0.684i)19-s + (0.187 − 0.982i)21-s + (0.248 − 0.968i)23-s + (−0.770 + 0.637i)27-s + (0.876 + 0.481i)29-s + (0.425 − 0.904i)31-s + (0.982 − 0.187i)33-s + (−0.770 − 0.637i)37-s + (−0.637 − 0.770i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.599320208 - 0.3786527898i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.599320208 - 0.3786527898i\) |
\(L(1)\) |
\(\approx\) |
\(1.234331500 + 0.02054258418i\) |
\(L(1)\) |
\(\approx\) |
\(1.234331500 + 0.02054258418i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.684 + 0.728i)T \) |
| 7 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (0.535 - 0.844i)T \) |
| 13 | \( 1 + (-0.998 - 0.0627i)T \) |
| 17 | \( 1 + (0.904 + 0.425i)T \) |
| 19 | \( 1 + (-0.728 - 0.684i)T \) |
| 23 | \( 1 + (0.248 - 0.968i)T \) |
| 29 | \( 1 + (0.876 + 0.481i)T \) |
| 31 | \( 1 + (0.425 - 0.904i)T \) |
| 37 | \( 1 + (-0.770 - 0.637i)T \) |
| 41 | \( 1 + (0.968 - 0.248i)T \) |
| 43 | \( 1 + (0.951 + 0.309i)T \) |
| 47 | \( 1 + (-0.125 - 0.992i)T \) |
| 53 | \( 1 + (0.982 + 0.187i)T \) |
| 59 | \( 1 + (0.929 + 0.368i)T \) |
| 61 | \( 1 + (-0.968 - 0.248i)T \) |
| 67 | \( 1 + (-0.481 - 0.876i)T \) |
| 71 | \( 1 + (0.992 - 0.125i)T \) |
| 73 | \( 1 + (-0.368 - 0.929i)T \) |
| 79 | \( 1 + (0.728 - 0.684i)T \) |
| 83 | \( 1 + (-0.684 + 0.728i)T \) |
| 89 | \( 1 + (0.929 - 0.368i)T \) |
| 97 | \( 1 + (0.481 - 0.876i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.54576037815293928614258387846, −20.95841814966634257108601371418, −19.923634765503534279775366810110, −19.26696827419990789118192711633, −18.90183911345850317806115144766, −17.77956761568607288437044703882, −17.2720675450129207067651579247, −16.09917239756177144542512348066, −15.21779884335935479204485406573, −14.57767844538529278926925292765, −13.892172038980388395188129717973, −12.77144866436055905967840061005, −12.26302497224391463277197790156, −11.76157333036217220999902114820, −10.122251919938876158644495269113, −9.55465144000629273315048668490, −8.77548575560172137502440039720, −7.81678358460854199221616846892, −7.04967651743969383242508826180, −6.27644151709969195598742440455, −5.26455237334344923995593435607, −4.04899873860645998036270147836, −2.98380752942310336275927181353, −2.28393652142198675627615848364, −1.22436753014478162536017268806,
0.69434921700493065917943145435, 2.30733497246393798840496754193, 3.1779877808958334266292384384, 4.005193008157990068352802680889, 4.76690865531024723643268494815, 5.94112562875993381221115033308, 6.95295749260838692738191899734, 7.83762720710041726463848508651, 8.75302399392261766535653899356, 9.470453992094269845971968162, 10.39140720216314633169775528879, 10.80196100640012260329325244808, 12.08810027896793360570618575841, 12.98290365419872836324639272917, 13.86547873621348582778362622656, 14.455716159375556062432416219203, 15.1889983230595026570042744297, 16.231989015582937746448083067881, 16.73172797644935048670362179330, 17.38697069820713097116489953900, 18.81865576208673855586392990525, 19.56304514554615129413540732146, 19.775367550767287221437077061207, 20.959962013213120181710193266707, 21.44526312420099273334707290867