L(s) = 1 | + (0.451 + 0.892i)2-s + (−0.592 + 0.805i)4-s + (0.298 + 0.954i)5-s + (−0.401 + 0.915i)7-s + (−0.986 − 0.164i)8-s + (−0.716 + 0.697i)10-s + (−0.789 + 0.614i)11-s + (0.191 + 0.981i)13-s + (−0.998 + 0.0550i)14-s + (−0.298 − 0.954i)16-s + (0.592 + 0.805i)17-s + (−0.945 − 0.324i)20-s + (−0.904 − 0.426i)22-s + (0.754 + 0.656i)23-s + (−0.821 + 0.569i)25-s + (−0.789 + 0.614i)26-s + ⋯ |
L(s) = 1 | + (0.451 + 0.892i)2-s + (−0.592 + 0.805i)4-s + (0.298 + 0.954i)5-s + (−0.401 + 0.915i)7-s + (−0.986 − 0.164i)8-s + (−0.716 + 0.697i)10-s + (−0.789 + 0.614i)11-s + (0.191 + 0.981i)13-s + (−0.998 + 0.0550i)14-s + (−0.298 − 0.954i)16-s + (0.592 + 0.805i)17-s + (−0.945 − 0.324i)20-s + (−0.904 − 0.426i)22-s + (0.754 + 0.656i)23-s + (−0.821 + 0.569i)25-s + (−0.789 + 0.614i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.669 - 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.669 - 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.5679108124 + 1.277043740i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.5679108124 + 1.277043740i\) |
\(L(1)\) |
\(\approx\) |
\(0.6001166393 + 0.9760856416i\) |
\(L(1)\) |
\(\approx\) |
\(0.6001166393 + 0.9760856416i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.451 + 0.892i)T \) |
| 5 | \( 1 + (0.298 + 0.954i)T \) |
| 7 | \( 1 + (-0.401 + 0.915i)T \) |
| 11 | \( 1 + (-0.789 + 0.614i)T \) |
| 13 | \( 1 + (0.191 + 0.981i)T \) |
| 17 | \( 1 + (0.592 + 0.805i)T \) |
| 23 | \( 1 + (0.754 + 0.656i)T \) |
| 29 | \( 1 + (0.993 - 0.110i)T \) |
| 31 | \( 1 + (-0.546 - 0.837i)T \) |
| 37 | \( 1 + (-0.789 + 0.614i)T \) |
| 41 | \( 1 + (0.0275 - 0.999i)T \) |
| 43 | \( 1 + (0.716 + 0.697i)T \) |
| 47 | \( 1 + (0.926 + 0.376i)T \) |
| 53 | \( 1 + (-0.926 - 0.376i)T \) |
| 59 | \( 1 + (0.0275 - 0.999i)T \) |
| 61 | \( 1 + (0.635 + 0.771i)T \) |
| 67 | \( 1 + (-0.350 - 0.936i)T \) |
| 71 | \( 1 + (0.635 - 0.771i)T \) |
| 73 | \( 1 + (-0.592 - 0.805i)T \) |
| 79 | \( 1 + (-0.716 - 0.697i)T \) |
| 83 | \( 1 + (0.677 + 0.735i)T \) |
| 89 | \( 1 + (-0.592 + 0.805i)T \) |
| 97 | \( 1 + (-0.350 + 0.936i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.817277553981304231151365291735, −20.36738308773426890299354476870, −19.66981220277993469207441628145, −18.801414021488938467432868702717, −17.95130563273427201994586947212, −17.16083066728100392584705184065, −16.19142461771792532260445773717, −15.6024596209075157184566510903, −14.220660839106732683294971348942, −13.78400026807923139735245624942, −12.799135767366257069452598079262, −12.65304973271190239212897214404, −11.42508856445694120245835913435, −10.48057635784973486412334569876, −10.0998000152055128145802104198, −9.02402959881079339617237200740, −8.30655432314672601803095012515, −7.15130016435151662546709234597, −5.86539446191594910964711843722, −5.23116813068399588885916748216, −4.43517006609923899571874816715, −3.3576503124115482166125898256, −2.660941975708181937193663241606, −1.19527698400735847189201397064, −0.53911292000595964814430852466,
1.99213765318987243941936009590, 2.90899832834576122935530655254, 3.75196777221652608775719772028, 4.92108999787787370787354275915, 5.78511810375908127296637416850, 6.43837137626043012272085025203, 7.23482506820351940313684478342, 8.056663943601633004351435947439, 9.11001800972530664574679001066, 9.76492869625879072028195378491, 10.83451679548959067356990869161, 11.89888624535241915582343648531, 12.6084137979339332190925809376, 13.45676524938675413395404149277, 14.22849329854755654945842897576, 15.03172889486673119635330341228, 15.49683829890131499855371106658, 16.30215921744977072082047070441, 17.33666244841289788889289136348, 17.90379956625988189671445502795, 18.90721418188530069734583534253, 19.083478656637331402402860708634, 20.846212394114991523100993740270, 21.35475208808524234648288161009, 22.0718487185915282029411705132