| L(s) = 1 | + (0.851 + 0.523i)2-s + (0.451 + 0.892i)4-s + (0.592 − 0.805i)5-s + (0.546 + 0.837i)7-s + (−0.0825 + 0.996i)8-s + (0.926 − 0.376i)10-s + (−0.945 + 0.324i)11-s + (−0.635 + 0.771i)13-s + (0.0275 + 0.999i)14-s + (−0.592 + 0.805i)16-s + (−0.451 + 0.892i)17-s + (0.986 + 0.164i)20-s + (−0.975 − 0.218i)22-s + (−0.350 + 0.936i)23-s + (−0.298 − 0.954i)25-s + (−0.945 + 0.324i)26-s + ⋯ |
| L(s) = 1 | + (0.851 + 0.523i)2-s + (0.451 + 0.892i)4-s + (0.592 − 0.805i)5-s + (0.546 + 0.837i)7-s + (−0.0825 + 0.996i)8-s + (0.926 − 0.376i)10-s + (−0.945 + 0.324i)11-s + (−0.635 + 0.771i)13-s + (0.0275 + 0.999i)14-s + (−0.592 + 0.805i)16-s + (−0.451 + 0.892i)17-s + (0.986 + 0.164i)20-s + (−0.975 − 0.218i)22-s + (−0.350 + 0.936i)23-s + (−0.298 − 0.954i)25-s + (−0.945 + 0.324i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.031623817 + 2.087154344i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.031623817 + 2.087154344i\) |
| \(L(1)\) |
\(\approx\) |
\(1.454514097 + 0.8731115846i\) |
| \(L(1)\) |
\(\approx\) |
\(1.454514097 + 0.8731115846i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.851 + 0.523i)T \) |
| 5 | \( 1 + (0.592 - 0.805i)T \) |
| 7 | \( 1 + (0.546 + 0.837i)T \) |
| 11 | \( 1 + (-0.945 + 0.324i)T \) |
| 13 | \( 1 + (-0.635 + 0.771i)T \) |
| 17 | \( 1 + (-0.451 + 0.892i)T \) |
| 23 | \( 1 + (-0.350 + 0.936i)T \) |
| 29 | \( 1 + (-0.998 + 0.0550i)T \) |
| 31 | \( 1 + (0.879 + 0.475i)T \) |
| 37 | \( 1 + (-0.945 + 0.324i)T \) |
| 41 | \( 1 + (0.716 - 0.697i)T \) |
| 43 | \( 1 + (-0.926 - 0.376i)T \) |
| 47 | \( 1 + (0.191 - 0.981i)T \) |
| 53 | \( 1 + (-0.191 + 0.981i)T \) |
| 59 | \( 1 + (0.716 - 0.697i)T \) |
| 61 | \( 1 + (0.904 + 0.426i)T \) |
| 67 | \( 1 + (0.821 + 0.569i)T \) |
| 71 | \( 1 + (0.904 - 0.426i)T \) |
| 73 | \( 1 + (0.451 - 0.892i)T \) |
| 79 | \( 1 + (0.926 + 0.376i)T \) |
| 83 | \( 1 + (0.401 - 0.915i)T \) |
| 89 | \( 1 + (0.451 + 0.892i)T \) |
| 97 | \( 1 + (0.821 - 0.569i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.05857516701514026874105697285, −20.6556417557819937857633364843, −19.84931216766278498487354831647, −18.88637266515874722405148935830, −18.17587529129709847665140931361, −17.472389740924978477456426363447, −16.36104049036423831358156247416, −15.4395787480449325684871236351, −14.666012677173455945227864443, −14.04383309187630542551269591052, −13.360257960062664680783574246127, −12.709144948793663464349766942332, −11.47053410733662937029034177292, −10.927518377865259891237384629932, −10.210424057848943018547458864033, −9.638384382310658921491743318120, −8.07101502691387325938140294320, −7.221451905905461304401813364084, −6.42647326199234312682491139950, −5.39439680121698859519664392985, −4.78551428677306237344114665924, −3.65150628152306728070269656338, −2.70817664412959967603794563469, −2.09573476818523355418273369511, −0.6454667919209451064049650905,
1.89220601733666521570806992027, 2.26318681694684404366235743484, 3.69994239855435664726128390167, 4.78151714398954359323949484357, 5.25160719296625839459582561744, 6.002508429984880640407118329110, 7.03685450553871770296800713792, 8.04823566885631289707441821358, 8.67150720612788955697360042259, 9.58744268264396445038830887051, 10.73053582984279621197673213752, 11.84155700005014591594599690778, 12.3252432194043262865305496808, 13.16226861495863643108681579374, 13.80544882448812468650133546351, 14.71902173280992828251364993121, 15.454357715356545797175403073634, 16.05849741570778266962210700749, 17.14845844588080568899537217373, 17.480960169787217481247025846466, 18.44429065353406303990707766609, 19.56214774942679714024874253634, 20.54900600733743644166953996506, 21.15732516056515775158960671053, 21.68750973156941789225002312375