| L(s) = 1 | + (0.635 + 0.771i)2-s + (−0.191 + 0.981i)4-s + (0.926 + 0.376i)5-s + (0.945 + 0.324i)7-s + (−0.879 + 0.475i)8-s + (0.298 + 0.954i)10-s + (0.401 − 0.915i)11-s + (−0.451 − 0.892i)13-s + (0.350 + 0.936i)14-s + (−0.926 − 0.376i)16-s + (0.191 + 0.981i)17-s + (−0.546 + 0.837i)20-s + (0.962 − 0.272i)22-s + (0.998 − 0.0550i)23-s + (0.716 + 0.697i)25-s + (0.401 − 0.915i)26-s + ⋯ |
| L(s) = 1 | + (0.635 + 0.771i)2-s + (−0.191 + 0.981i)4-s + (0.926 + 0.376i)5-s + (0.945 + 0.324i)7-s + (−0.879 + 0.475i)8-s + (0.298 + 0.954i)10-s + (0.401 − 0.915i)11-s + (−0.451 − 0.892i)13-s + (0.350 + 0.936i)14-s + (−0.926 − 0.376i)16-s + (0.191 + 0.981i)17-s + (−0.546 + 0.837i)20-s + (0.962 − 0.272i)22-s + (0.998 − 0.0550i)23-s + (0.716 + 0.697i)25-s + (0.401 − 0.915i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.802899900 + 2.122430278i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.802899900 + 2.122430278i\) |
| \(L(1)\) |
\(\approx\) |
\(1.537250103 + 0.9919900515i\) |
| \(L(1)\) |
\(\approx\) |
\(1.537250103 + 0.9919900515i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.635 + 0.771i)T \) |
| 5 | \( 1 + (0.926 + 0.376i)T \) |
| 7 | \( 1 + (0.945 + 0.324i)T \) |
| 11 | \( 1 + (0.401 - 0.915i)T \) |
| 13 | \( 1 + (-0.451 - 0.892i)T \) |
| 17 | \( 1 + (0.191 + 0.981i)T \) |
| 23 | \( 1 + (0.998 - 0.0550i)T \) |
| 29 | \( 1 + (-0.754 + 0.656i)T \) |
| 31 | \( 1 + (0.986 + 0.164i)T \) |
| 37 | \( 1 + (0.401 - 0.915i)T \) |
| 41 | \( 1 + (-0.821 + 0.569i)T \) |
| 43 | \( 1 + (-0.298 + 0.954i)T \) |
| 47 | \( 1 + (0.592 + 0.805i)T \) |
| 53 | \( 1 + (-0.592 - 0.805i)T \) |
| 59 | \( 1 + (-0.821 + 0.569i)T \) |
| 61 | \( 1 + (0.851 - 0.523i)T \) |
| 67 | \( 1 + (-0.0275 + 0.999i)T \) |
| 71 | \( 1 + (0.851 + 0.523i)T \) |
| 73 | \( 1 + (-0.191 - 0.981i)T \) |
| 79 | \( 1 + (0.298 - 0.954i)T \) |
| 83 | \( 1 + (-0.789 - 0.614i)T \) |
| 89 | \( 1 + (-0.191 + 0.981i)T \) |
| 97 | \( 1 + (-0.0275 - 0.999i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.1446993769232157318637436347, −20.56217431990305530693258435245, −20.09795524656308705182858495880, −18.88566130471444966036077566585, −18.319665994716877043005500772778, −17.24077044887676570656750041178, −16.92935055484222294762649388771, −15.427671586844865050642290061014, −14.75583195183259624271283968576, −13.87009481265851571639300812674, −13.600019312923211264089383018915, −12.43423679403935781741524199005, −11.82157915928817710975112091499, −11.058476526921525088814936329016, −10.00173403080483824474875975496, −9.52344094714817463925505728435, −8.66734605995179509542406587079, −7.25669724990544039758403238792, −6.49453308990635925952715479006, −5.24663448110151399379610901606, −4.82731850882095327794222776393, −4.00717550377466175483325005964, −2.586972385340124157003299329023, −1.880506104435037369954163092381, −1.05317834823193025765010703969,
1.38352632754729028383862302421, 2.63211673998199522333042890171, 3.38527568606933095280970367857, 4.63800820716003116745787526356, 5.470495590595553875014853434195, 6.003545852611816605901604341500, 6.92297252610980215484733039964, 7.94290876689130884309194759749, 8.59210874165781185348258092305, 9.49532982198090918401848367409, 10.71050878406604195790895196435, 11.35512962982680379909191655532, 12.47320724875962976751220778110, 13.14501426769090816396543062682, 13.972591698513731664819778462686, 14.75508859103746171597823542719, 15.0055602699502398729296450617, 16.22228960014601715798575484607, 17.13330510428791457799449593876, 17.50337714568245202804090614782, 18.305824859475295903810045533774, 19.18373249446770944763907356799, 20.45611901081977475038507661410, 21.22004397924536365419615437158, 21.74531090901531272241522449570