| L(s) = 1 | + (−0.962 − 0.272i)2-s + (0.851 + 0.523i)4-s + (−0.451 − 0.892i)5-s + (−0.879 − 0.475i)7-s + (−0.677 − 0.735i)8-s + (0.191 + 0.981i)10-s + (0.986 − 0.164i)11-s + (−0.904 + 0.426i)13-s + (0.716 + 0.697i)14-s + (0.451 + 0.892i)16-s + (−0.851 + 0.523i)17-s + (0.0825 − 0.996i)20-s + (−0.993 − 0.110i)22-s + (0.821 − 0.569i)23-s + (−0.592 + 0.805i)25-s + (0.986 − 0.164i)26-s + ⋯ |
| L(s) = 1 | + (−0.962 − 0.272i)2-s + (0.851 + 0.523i)4-s + (−0.451 − 0.892i)5-s + (−0.879 − 0.475i)7-s + (−0.677 − 0.735i)8-s + (0.191 + 0.981i)10-s + (0.986 − 0.164i)11-s + (−0.904 + 0.426i)13-s + (0.716 + 0.697i)14-s + (0.451 + 0.892i)16-s + (−0.851 + 0.523i)17-s + (0.0825 − 0.996i)20-s + (−0.993 − 0.110i)22-s + (0.821 − 0.569i)23-s + (−0.592 + 0.805i)25-s + (0.986 − 0.164i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5896856660 + 0.01497074179i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5896856660 + 0.01497074179i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5610135797 - 0.1100030711i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5610135797 - 0.1100030711i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.962 - 0.272i)T \) |
| 5 | \( 1 + (-0.451 - 0.892i)T \) |
| 7 | \( 1 + (-0.879 - 0.475i)T \) |
| 11 | \( 1 + (0.986 - 0.164i)T \) |
| 13 | \( 1 + (-0.904 + 0.426i)T \) |
| 17 | \( 1 + (-0.851 + 0.523i)T \) |
| 23 | \( 1 + (0.821 - 0.569i)T \) |
| 29 | \( 1 + (0.0275 + 0.999i)T \) |
| 31 | \( 1 + (-0.245 + 0.969i)T \) |
| 37 | \( 1 + (0.986 - 0.164i)T \) |
| 41 | \( 1 + (-0.926 + 0.376i)T \) |
| 43 | \( 1 + (-0.191 + 0.981i)T \) |
| 47 | \( 1 + (-0.635 - 0.771i)T \) |
| 53 | \( 1 + (0.635 + 0.771i)T \) |
| 59 | \( 1 + (-0.926 + 0.376i)T \) |
| 61 | \( 1 + (0.975 + 0.218i)T \) |
| 67 | \( 1 + (0.298 - 0.954i)T \) |
| 71 | \( 1 + (0.975 - 0.218i)T \) |
| 73 | \( 1 + (0.851 - 0.523i)T \) |
| 79 | \( 1 + (0.191 - 0.981i)T \) |
| 83 | \( 1 + (-0.546 - 0.837i)T \) |
| 89 | \( 1 + (0.851 + 0.523i)T \) |
| 97 | \( 1 + (0.298 + 0.954i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.52054441074887048941446487852, −20.19347511666548987415882434488, −19.73403504701876476353263574683, −19.019477579699553543090673547977, −18.509096011074428737194446633566, −17.50231994334694550238940513557, −16.95383298016135443613305345605, −15.93407799419807475592725517600, −15.22322016790586256949211718050, −14.84794069932276993732746158348, −13.73863224246248005456624112772, −12.55406226747154453126019426139, −11.61089697800635428903699221961, −11.19397881658539730236059908852, −9.91409900807361172722372079013, −9.6246008858685959237908593011, −8.64346367811989669716192138572, −7.625199573044428626857561569664, −6.87145656123854733452154586632, −6.38087344481461569839195264434, −5.30189887021102581289526352155, −3.87642608355717667715625549219, −2.823248520244514439318689609236, −2.15095517900532981819170189819, −0.47403918659455893656338002829,
0.79844300423300718472409036195, 1.780577479072308095630516217717, 3.07777563588262417049106829513, 3.93173442263359571156803416262, 4.87793156665951469624483404346, 6.411386917531369717489639192660, 6.89588153814786061591225694893, 7.866923980710254879851810970375, 8.93941757693977930620785094576, 9.19179049149110109538505739901, 10.19089661163079429135913976692, 11.07511675438893603836522180660, 11.934771474536797622398931957631, 12.60101215602728649444054925355, 13.26477671101917639438144182740, 14.588037586722414140796493224995, 15.43824576834965282397288251640, 16.52556239743249763049217922796, 16.62951048891239924999972986457, 17.40047910626035624714395618950, 18.45060983709550772042804007641, 19.44345840550013665975713793807, 19.800634162630841376572259352516, 20.20126276510295626819559402572, 21.42529754448853251089483504092