| L(s) = 1 | + (0.854 + 0.519i)2-s + (−0.576 − 0.816i)3-s + (0.460 + 0.887i)4-s + (−0.203 + 0.979i)5-s + (−0.0682 − 0.997i)6-s + (−0.962 − 0.269i)7-s + (−0.0682 + 0.997i)8-s + (−0.334 + 0.942i)9-s + (−0.682 + 0.730i)10-s + (0.990 − 0.136i)11-s + (0.460 − 0.887i)12-s + (−0.775 − 0.631i)13-s + (−0.682 − 0.730i)14-s + (0.917 − 0.398i)15-s + (−0.576 + 0.816i)16-s + (0.990 + 0.136i)17-s + ⋯ |
| L(s) = 1 | + (0.854 + 0.519i)2-s + (−0.576 − 0.816i)3-s + (0.460 + 0.887i)4-s + (−0.203 + 0.979i)5-s + (−0.0682 − 0.997i)6-s + (−0.962 − 0.269i)7-s + (−0.0682 + 0.997i)8-s + (−0.334 + 0.942i)9-s + (−0.682 + 0.730i)10-s + (0.990 − 0.136i)11-s + (0.460 − 0.887i)12-s + (−0.775 − 0.631i)13-s + (−0.682 − 0.730i)14-s + (0.917 − 0.398i)15-s + (−0.576 + 0.816i)16-s + (0.990 + 0.136i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.859 - 0.510i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.859 - 0.510i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.492478508 - 0.4095999922i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.492478508 - 0.4095999922i\) |
| \(L(1)\) |
\(\approx\) |
\(1.124402117 + 0.2337209619i\) |
| \(L(1)\) |
\(\approx\) |
\(1.124402117 + 0.2337209619i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 23 | \( 1 \) |
| 47 | \( 1 \) |
| good | 2 | \( 1 + (0.854 + 0.519i)T \) |
| 3 | \( 1 + (-0.576 - 0.816i)T \) |
| 5 | \( 1 + (-0.203 + 0.979i)T \) |
| 7 | \( 1 + (-0.962 - 0.269i)T \) |
| 11 | \( 1 + (0.990 - 0.136i)T \) |
| 13 | \( 1 + (-0.775 - 0.631i)T \) |
| 17 | \( 1 + (0.990 + 0.136i)T \) |
| 19 | \( 1 + (-0.203 - 0.979i)T \) |
| 29 | \( 1 + (-0.775 + 0.631i)T \) |
| 31 | \( 1 + (-0.576 + 0.816i)T \) |
| 37 | \( 1 + (-0.682 + 0.730i)T \) |
| 41 | \( 1 + (-0.0682 - 0.997i)T \) |
| 43 | \( 1 + (-0.460 - 0.887i)T \) |
| 53 | \( 1 + (0.0682 + 0.997i)T \) |
| 59 | \( 1 + (0.460 - 0.887i)T \) |
| 61 | \( 1 + (-0.682 - 0.730i)T \) |
| 67 | \( 1 + (-0.962 + 0.269i)T \) |
| 71 | \( 1 + (0.854 - 0.519i)T \) |
| 73 | \( 1 + (-0.334 - 0.942i)T \) |
| 79 | \( 1 + (0.917 - 0.398i)T \) |
| 83 | \( 1 + (0.990 - 0.136i)T \) |
| 89 | \( 1 + (-0.203 + 0.979i)T \) |
| 97 | \( 1 + (0.576 + 0.816i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.251531622744456288392197294179, −20.86770004198678429494158937262, −19.83198310532579092691837197644, −19.41429041793526200743125997648, −18.41291146514856487832124914507, −16.86644489753386010350432090104, −16.66826059331893737817678679123, −15.92567286315199234534800536060, −14.936652869300102748340283041875, −14.43615385036898704871441341616, −13.233193933046558908124371202667, −12.38970387805972594223501818111, −11.9782819856626786431752875135, −11.317101573179761605233313890696, −9.914055988193488066340077468347, −9.72549351451223831468777937820, −8.890234746044867467236359042382, −7.33179929932488784842029930991, −6.196581316788519312957678346842, −5.67976922615955073794157343977, −4.74156588557847102499312282939, −3.96109646272027705590673943981, −3.39607362397210868249887375741, −1.95327875746668755827336351690, −0.78995344964126461624528925626,
0.321424718858172194525088674963, 1.9346834612868149551984088630, 3.07030120990069301117989644811, 3.59261686217746023135561095490, 4.9598302892755300381589498730, 5.84079877796692826619557449374, 6.63650546096479019576235944554, 7.10404423443286383244471702654, 7.74388390191982502745692819686, 9.00942377870438084566243324943, 10.34661485561779733933107833603, 11.02379072343991129966361806231, 12.089105905627935336319397711691, 12.39064909942069411924462122623, 13.41780865536713126878926904737, 14.0472102733095367942743639185, 14.82871460607387185463224363259, 15.63282583882239927386153037913, 16.64039030575116611385050096765, 17.124730804429803879695203518113, 17.92271774899850837002453578453, 18.96629371054579736315116259370, 19.54501196686411909286491544674, 20.29245448751853063809403018491, 21.84604953959859895916906886312