| L(s) = 1 | + (0.997 + 0.0744i)2-s + (0.154 + 0.987i)3-s + (0.988 + 0.148i)4-s + (0.239 − 0.970i)5-s + (0.0806 + 0.996i)6-s + (0.969 − 0.245i)7-s + (0.975 + 0.221i)8-s + (−0.952 + 0.305i)9-s + (0.311 − 0.950i)10-s + (0.263 − 0.964i)11-s + (0.00620 + 0.999i)12-s + (−0.867 − 0.498i)13-s + (0.984 − 0.172i)14-s + (0.996 + 0.0868i)15-s + (0.955 + 0.293i)16-s + (0.767 − 0.640i)17-s + ⋯ |
| L(s) = 1 | + (0.997 + 0.0744i)2-s + (0.154 + 0.987i)3-s + (0.988 + 0.148i)4-s + (0.239 − 0.970i)5-s + (0.0806 + 0.996i)6-s + (0.969 − 0.245i)7-s + (0.975 + 0.221i)8-s + (−0.952 + 0.305i)9-s + (0.311 − 0.950i)10-s + (0.263 − 0.964i)11-s + (0.00620 + 0.999i)12-s + (−0.867 − 0.498i)13-s + (0.984 − 0.172i)14-s + (0.996 + 0.0868i)15-s + (0.955 + 0.293i)16-s + (0.767 − 0.640i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(5.025399334 - 1.647487518i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.025399334 - 1.647487518i\) |
| \(L(1)\) |
\(\approx\) |
\(2.373822720 + 0.0007279187582i\) |
| \(L(1)\) |
\(\approx\) |
\(2.373822720 + 0.0007279187582i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 23 | \( 1 \) |
| 47 | \( 1 \) |
| good | 2 | \( 1 + (0.997 + 0.0744i)T \) |
| 3 | \( 1 + (0.154 + 0.987i)T \) |
| 5 | \( 1 + (0.239 - 0.970i)T \) |
| 7 | \( 1 + (0.969 - 0.245i)T \) |
| 11 | \( 1 + (0.263 - 0.964i)T \) |
| 13 | \( 1 + (-0.867 - 0.498i)T \) |
| 17 | \( 1 + (0.767 - 0.640i)T \) |
| 19 | \( 1 + (-0.783 + 0.621i)T \) |
| 29 | \( 1 + (0.191 - 0.981i)T \) |
| 31 | \( 1 + (-0.154 + 0.987i)T \) |
| 37 | \( 1 + (0.0310 - 0.999i)T \) |
| 41 | \( 1 + (0.873 - 0.487i)T \) |
| 43 | \( 1 + (0.535 + 0.844i)T \) |
| 53 | \( 1 + (0.700 - 0.713i)T \) |
| 59 | \( 1 + (-0.907 + 0.421i)T \) |
| 61 | \( 1 + (-0.896 + 0.443i)T \) |
| 67 | \( 1 + (0.820 - 0.571i)T \) |
| 71 | \( 1 + (-0.977 - 0.209i)T \) |
| 73 | \( 1 + (0.966 - 0.257i)T \) |
| 79 | \( 1 + (-0.791 - 0.611i)T \) |
| 83 | \( 1 + (0.901 - 0.432i)T \) |
| 89 | \( 1 + (0.503 - 0.863i)T \) |
| 97 | \( 1 + (-0.426 - 0.904i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.57089985958093022839211665077, −20.60051372391402033557798309392, −19.82121517003161367194906000414, −19.06878971102779093373484218905, −18.381689612630868107818112358555, −17.363983097659104569256169568188, −16.96675726313088000593346496437, −15.29782113983189684689483213685, −14.76760024785497185106395393402, −14.37599256419846922235756303286, −13.58397769677379181959538097433, −12.57096918507966133162193383764, −12.05660975271161971897126769246, −11.25780187278281626194261802269, −10.51928647171281725814387164299, −9.38508552779562279039288206607, −8.026020424152882189518523150010, −7.339302940325862208220061733900, −6.72142300154340653980913800902, −5.89577745717775084381374676023, −4.94098011592127854893977593324, −3.95141526596322333987345794687, −2.69218276757776013245011437830, −2.158379670605726218105578808336, −1.36335481606144902942058513336,
0.67492578299809526101908022630, 1.96221616385512904260690403443, 3.01468093757093720546003145894, 4.048669534118547040833289528577, 4.670538127571382806880921647376, 5.43197200756141450161212987533, 5.97983544503747599591708708634, 7.59065439681228619176049495195, 8.20129061458378220629590730193, 9.13657927691215782555832765435, 10.20288109834697018675108438096, 10.90041952971255771005240153936, 11.79729387785867638261451427008, 12.428353950503390718064515072526, 13.5424694723782636542357217688, 14.25067085699671773253127082059, 14.69297004334368509598656256049, 15.70449821797204192772001661816, 16.43618144206747669311240801417, 16.93162072486244795323130745400, 17.68452376595945855373455490148, 19.332970604863202635419362843969, 19.928185801471733688715465335308, 20.7803200472288166062653599059, 21.28153015179546821217091310193