| L(s) = 1 | + (0.642 + 0.766i)7-s + (−0.173 − 0.984i)11-s + (−0.342 − 0.939i)13-s + (−0.866 − 0.5i)17-s + (−0.5 − 0.866i)19-s + (0.642 − 0.766i)23-s + (−0.939 − 0.342i)29-s + (0.766 + 0.642i)31-s + (0.866 + 0.5i)37-s + (−0.939 + 0.342i)41-s + (−0.984 + 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (0.173 − 0.984i)59-s + ⋯ |
| L(s) = 1 | + (0.642 + 0.766i)7-s + (−0.173 − 0.984i)11-s + (−0.342 − 0.939i)13-s + (−0.866 − 0.5i)17-s + (−0.5 − 0.866i)19-s + (0.642 − 0.766i)23-s + (−0.939 − 0.342i)29-s + (0.766 + 0.642i)31-s + (0.866 + 0.5i)37-s + (−0.939 + 0.342i)41-s + (−0.984 + 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (0.173 − 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.851 + 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.851 + 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05669063417 + 0.2002346777i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.05669063417 + 0.2002346777i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9205281299 - 0.04287529192i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9205281299 - 0.04287529192i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.642 + 0.766i)T \) |
| 11 | \( 1 + (-0.173 - 0.984i)T \) |
| 13 | \( 1 + (-0.342 - 0.939i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.642 - 0.766i)T \) |
| 29 | \( 1 + (-0.939 - 0.342i)T \) |
| 31 | \( 1 + (0.766 + 0.642i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (-0.984 + 0.173i)T \) |
| 47 | \( 1 + (0.642 + 0.766i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.173 - 0.984i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.342 + 0.939i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.342 - 0.939i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.984 + 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.90949596966904611237545458198, −20.21549248563888998319029103273, −19.484383649176150410166345303538, −18.589379494452674393068188420037, −17.75019064351310837656337392250, −17.02701443095383175168622927301, −16.521485953915362552747519814494, −15.1167155116066611574115712495, −14.9138885875381723886471788168, −13.79280079480038513718008934944, −13.17671132014768879262558523360, −12.18108232627134720292428324760, −11.39396695491260774284256937738, −10.588436608215571192488767610366, −9.79955346091000021647375070972, −8.91121476884438810449694598978, −7.9002285511233054149660914756, −7.193988749791190403425489172129, −6.41803352273784400452462455237, −5.16264091374149886055076446209, −4.39264045966967003514634498652, −3.69053861941387422170379374089, −2.13620335348811463290223834108, −1.57636897369494983208293082722, −0.04316010816178303311265164234,
1.079419561149190679382351778624, 2.47724332117577106460665340828, 2.98720011785874640394585526044, 4.45290315388510331399654702327, 5.15663914656578841733010594754, 6.02682279869470123538871685166, 6.9563019933178907223089229659, 8.0971929402015577225006272263, 8.61707937047877067802499539548, 9.46170599367520919320709151519, 10.6489281186173484628877775399, 11.21276001915050258959819399162, 12.01488766194536014529366507931, 13.02109907681317622797482082536, 13.59748485595050496474107686725, 14.73065263128199144277159427267, 15.251668971783185571493083088699, 16.012736089055068807998265473930, 17.040027609917398126763906485014, 17.70757965279637747881396962015, 18.525014683752723769778398323820, 19.11687330768215643554108251988, 20.15926935694980554189486298673, 20.74682099920882758668905215545, 21.86011621753328830604869258998