| L(s) = 1 | + (−0.342 + 0.939i)7-s + (0.766 − 0.642i)11-s + (0.984 + 0.173i)13-s + (−0.866 − 0.5i)17-s + (0.5 + 0.866i)19-s + (−0.342 − 0.939i)23-s + (0.173 + 0.984i)29-s + (0.939 − 0.342i)31-s + (0.866 + 0.5i)37-s + (0.173 − 0.984i)41-s + (−0.642 − 0.766i)43-s + (−0.342 + 0.939i)47-s + (−0.766 − 0.642i)49-s − i·53-s + (−0.766 − 0.642i)59-s + ⋯ |
| L(s) = 1 | + (−0.342 + 0.939i)7-s + (0.766 − 0.642i)11-s + (0.984 + 0.173i)13-s + (−0.866 − 0.5i)17-s + (0.5 + 0.866i)19-s + (−0.342 − 0.939i)23-s + (0.173 + 0.984i)29-s + (0.939 − 0.342i)31-s + (0.866 + 0.5i)37-s + (0.173 − 0.984i)41-s + (−0.642 − 0.766i)43-s + (−0.342 + 0.939i)47-s + (−0.766 − 0.642i)49-s − i·53-s + (−0.766 − 0.642i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.503593766 + 0.3802463079i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.503593766 + 0.3802463079i\) |
| \(L(1)\) |
\(\approx\) |
\(1.124303844 + 0.1162635054i\) |
| \(L(1)\) |
\(\approx\) |
\(1.124303844 + 0.1162635054i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.342 + 0.939i)T \) |
| 11 | \( 1 + (0.766 - 0.642i)T \) |
| 13 | \( 1 + (0.984 + 0.173i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.342 - 0.939i)T \) |
| 29 | \( 1 + (0.173 + 0.984i)T \) |
| 31 | \( 1 + (0.939 - 0.342i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.642 - 0.766i)T \) |
| 47 | \( 1 + (-0.342 + 0.939i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.984 + 0.173i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.984 - 0.173i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.642 + 0.766i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.43021948175818043136784968508, −20.45828354987449384556600832007, −19.79893088436859602507283777498, −19.38358038271616526704524056529, −18.02826084433395281273409528094, −17.6064710545107089719032853704, −16.77894527375850332303116807127, −15.88980798804761889844896056021, −15.24901851655727409292523042840, −14.24900874505920381986916311665, −13.38410961376588430403010745084, −13.0196466879810915359908748412, −11.68141963685927070960138269656, −11.19962676853095905171296619130, −10.11823209830207598688221037104, −9.524798426828071669238516475478, −8.51987316840004137011327138468, −7.60889230428006417007539941062, −6.69107883250133731730627810803, −6.13492399320658117964328244481, −4.75299542086412772669412494898, −4.037362066603952838297764094784, −3.196534453541806753268909429222, −1.866984319634306799585976220457, −0.83254232717364150986656404299,
1.014909686955408683241223343488, 2.21077361348447948421171801535, 3.199864225854351036227273964137, 4.075703925367348687656042907253, 5.19835159116490736983976524203, 6.20992021341343553203129785125, 6.583176496540167854988484544501, 7.99238182749015705479849186765, 8.767862464988981820060628410417, 9.31218499598366150325821099460, 10.39226632212035449017786295229, 11.33609110684526723613840233375, 11.96144343498835169360681445992, 12.790776050820538328115758611226, 13.75699214568794168777365887894, 14.35985356241903955998512353652, 15.40635826532230143768888977330, 16.05796059112702892403165926155, 16.67706863974384478245064365003, 17.77010632654778056530922989697, 18.58577115279303403534769914686, 18.954303827016461092305172420983, 20.05896134943539258207140360761, 20.6772920553685492664454156664, 21.65891910116135661352581041781