| L(s) = 1 | + (−0.642 − 0.766i)7-s + (0.173 + 0.984i)11-s + (0.342 + 0.939i)13-s + (−0.866 − 0.5i)17-s + (−0.5 − 0.866i)19-s + (0.642 − 0.766i)23-s + (0.939 + 0.342i)29-s + (0.766 + 0.642i)31-s + (−0.866 − 0.5i)37-s + (0.939 − 0.342i)41-s + (0.984 − 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (−0.173 + 0.984i)59-s + ⋯ |
| L(s) = 1 | + (−0.642 − 0.766i)7-s + (0.173 + 0.984i)11-s + (0.342 + 0.939i)13-s + (−0.866 − 0.5i)17-s + (−0.5 − 0.866i)19-s + (0.642 − 0.766i)23-s + (0.939 + 0.342i)29-s + (0.766 + 0.642i)31-s + (−0.866 − 0.5i)37-s + (0.939 − 0.342i)41-s + (0.984 − 0.173i)43-s + (0.642 + 0.766i)47-s + (−0.173 + 0.984i)49-s − i·53-s + (−0.173 + 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.335521819 - 0.05890342751i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.335521819 - 0.05890342751i\) |
| \(L(1)\) |
\(\approx\) |
\(1.022382466 + 0.02542207518i\) |
| \(L(1)\) |
\(\approx\) |
\(1.022382466 + 0.02542207518i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.642 - 0.766i)T \) |
| 11 | \( 1 + (0.173 + 0.984i)T \) |
| 13 | \( 1 + (0.342 + 0.939i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.642 - 0.766i)T \) |
| 29 | \( 1 + (0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.766 + 0.642i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.642 + 0.766i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.342 - 0.939i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.342 - 0.939i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.984 - 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.439979450541661567892637148097, −20.859150335539324438450632691322, −19.68623122637532205190183068148, −19.20972815107697280196841100507, −18.482471850516049706103973464973, −17.548009154793975324239332432654, −16.84889160389165694641532320307, −15.72633630809316534112712663834, −15.51190266497058593300218464717, −14.43139932774137347232702984205, −13.459182515947961273790417491750, −12.865082263139024738885127113434, −12.016825805316812550486038093047, −11.12149819838645512262243594589, −10.35034939852679192003112075530, −9.40530141766595868085746584401, −8.54731109219217727989324355987, −7.99032343829903496531589606425, −6.58713843307597486993220144167, −6.0395176024463734091540900652, −5.23619588516762400723458143760, −3.93230337046560714934798488578, −3.144766253021309553306001040628, −2.21970049885170540753899187923, −0.82235919637617964531920720047,
0.81353294805048774192076188194, 2.11341744286908685435482058112, 3.05646694068121057502360400039, 4.40027780325899538545107377824, 4.58744177554053439739863775808, 6.22168699958678960488312170253, 6.86025536228450277044099811989, 7.44032416881799940995124201110, 8.914441645169789099608843157087, 9.23237195720304203710664525955, 10.452321113498871438149664824020, 10.90764911189755038735417847903, 12.09878006077968601965575677693, 12.721791257175103883695856061759, 13.70347134541496107942659842466, 14.18035461665690920894272503226, 15.36359779173755447834866753204, 15.922577917770906690931332984474, 16.84435607411216741263441817762, 17.502148301471476638436042249710, 18.26913334012731720134949353157, 19.4222425226734162242024249067, 19.69384810027808765081461453257, 20.71136292936426133685551143558, 21.30608235062731194366555263521