| L(s) = 1 | + (0.173 − 0.984i)7-s + (0.939 − 0.342i)11-s + (0.766 − 0.642i)13-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)23-s + (0.766 + 0.642i)29-s + (−0.173 − 0.984i)31-s + (−0.5 − 0.866i)37-s + (−0.766 + 0.642i)41-s + (0.939 − 0.342i)43-s + (−0.173 + 0.984i)47-s + (−0.939 − 0.342i)49-s − 53-s + (0.939 + 0.342i)59-s + ⋯ |
| L(s) = 1 | + (0.173 − 0.984i)7-s + (0.939 − 0.342i)11-s + (0.766 − 0.642i)13-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)23-s + (0.766 + 0.642i)29-s + (−0.173 − 0.984i)31-s + (−0.5 − 0.866i)37-s + (−0.766 + 0.642i)41-s + (0.939 − 0.342i)43-s + (−0.173 + 0.984i)47-s + (−0.939 − 0.342i)49-s − 53-s + (0.939 + 0.342i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0581 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0581 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.076066044 - 1.015215953i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.076066044 - 1.015215953i\) |
| \(L(1)\) |
\(\approx\) |
\(1.078561886 - 0.3107206436i\) |
| \(L(1)\) |
\(\approx\) |
\(1.078561886 - 0.3107206436i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.939 - 0.342i)T \) |
| 13 | \( 1 + (0.766 - 0.642i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (0.766 + 0.642i)T \) |
| 31 | \( 1 + (-0.173 - 0.984i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 + (0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.173 + 0.984i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.766 + 0.642i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.68774224645011342616057908995, −21.05034987209719964071023739288, −19.95585871707864397745680038750, −19.310695292960568057267541571432, −18.64397908758605130254313366365, −17.56183022231604609015456676031, −17.2749469046783985565856166952, −15.96435730902997519285926407125, −15.46746905973855194916019281829, −14.65387293795771125032469520942, −13.81734805443722565401746696782, −12.95818397762381805065433363944, −12.0178196038638314927820231471, −11.49292669999381032463300100984, −10.58113036665753825902507895913, −9.44945438005482870730483413644, −8.829616694839150560623727394924, −8.17301508046305826878076411589, −6.78414064486661626512798356623, −6.33636272834122171054653233817, −5.25382397561035618669505684726, −4.31278309853223916834636932141, −3.416048541888128396150163415436, −2.17288330910317246769246328197, −1.428107569398971784550107136791,
0.64551530689703670042407440860, 1.65264992312214082800654685000, 3.001961136294995283371900747273, 3.93625511204138573504670485473, 4.61200633253970991381231393994, 5.89029059635780551253813378270, 6.5991108951809845350844234203, 7.51801308404325727715725978519, 8.397494953261129609019986244730, 9.17858198169867109352752868127, 10.27538001329205608901729452542, 10.846675206195139905639216753609, 11.68669027374078114947089544630, 12.63868578650222672895595243068, 13.49516773059655179116804850417, 14.19212179486218810173781036707, 14.83425359179480194793454515071, 16.05009780486043841858322323220, 16.504216010430307837396770105881, 17.41815052875239580164461295893, 18.07088074382353564186182110949, 19.001382231100772327475640567674, 19.80316097416096377479935003192, 20.56018179411047618686621064209, 21.00470070541106856468971511975