| L(s) = 1 | + (0.984 + 0.173i)7-s + (−0.939 + 0.342i)11-s + (0.642 + 0.766i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.984 + 0.173i)23-s + (−0.766 − 0.642i)29-s + (0.173 + 0.984i)31-s + (−0.866 + 0.5i)37-s + (−0.766 + 0.642i)41-s + (−0.342 − 0.939i)43-s + (−0.984 − 0.173i)47-s + (0.939 + 0.342i)49-s − i·53-s + (0.939 + 0.342i)59-s + ⋯ |
| L(s) = 1 | + (0.984 + 0.173i)7-s + (−0.939 + 0.342i)11-s + (0.642 + 0.766i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.984 + 0.173i)23-s + (−0.766 − 0.642i)29-s + (0.173 + 0.984i)31-s + (−0.866 + 0.5i)37-s + (−0.766 + 0.642i)41-s + (−0.342 − 0.939i)43-s + (−0.984 − 0.173i)47-s + (0.939 + 0.342i)49-s − i·53-s + (0.939 + 0.342i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4261543715 + 0.8195218892i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4261543715 + 0.8195218892i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9155916285 + 0.2292461364i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9155916285 + 0.2292461364i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.984 + 0.173i)T \) |
| 11 | \( 1 + (-0.939 + 0.342i)T \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.984 + 0.173i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 + (-0.342 - 0.939i)T \) |
| 47 | \( 1 + (-0.984 - 0.173i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.642 - 0.766i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.342 - 0.939i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.0559782915557162264224379517, −20.49442485794198141408105080566, −19.81185882253847418408318789054, −18.66270162711498565532290587104, −18.038084947612745882500259304751, −17.51521443647004252845102680438, −16.4725963950019709897457526715, −15.600354925047840149048077702689, −15.08363535634304472757856912630, −13.995874643965008558963790608568, −13.38155572179822543000429634945, −12.62031106088934847479769263892, −11.40044415608309263638754324315, −10.97080506817487600928209569384, −10.18189380183551356248021870490, −8.99095587385097713051799304569, −8.24416302710850244823754160769, −7.59701757723854511517490226513, −6.536113023561742613597302879360, −5.495756221827643955997690072686, −4.814011675703427229991405478151, −3.81060900247914994368786850895, −2.66976341109024798627708942539, −1.76736976618122811221094245758, −0.353986049796785894937300324401,
1.65223819177574660801591325991, 2.13135861189079249248222287550, 3.59634678481862846373586267893, 4.45209072869018626566594691088, 5.302615739147761522627000519053, 6.23504644848430134204325831825, 7.18844433373675661748059426149, 8.288844706085237494511013398681, 8.55336481596637447216949214404, 9.89019270465684437516735846130, 10.60173697471712311188927350662, 11.44314958147162713755611845983, 12.136284598136776840838796865567, 13.16616646246763547773586888211, 13.843557951531312903067762623693, 14.74911980389141041422509292897, 15.418546689635109193429489105074, 16.22782712168615401785211474425, 17.14347398333397045272451808893, 17.96370898569207465047688465645, 18.47153090579983389655469077695, 19.34919054898985751055048738137, 20.35634186938890315336675051471, 21.00121377806889817454920258301, 21.51733083580796210005917770703