| L(s) = 1 | + (−0.173 − 0.984i)7-s + (0.939 + 0.342i)11-s + (0.766 + 0.642i)13-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (−0.766 + 0.642i)29-s + (0.173 − 0.984i)31-s + (−0.5 + 0.866i)37-s + (0.766 + 0.642i)41-s + (−0.939 − 0.342i)43-s + (−0.173 − 0.984i)47-s + (−0.939 + 0.342i)49-s + 53-s + (0.939 − 0.342i)59-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)7-s + (0.939 + 0.342i)11-s + (0.766 + 0.642i)13-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (−0.766 + 0.642i)29-s + (0.173 − 0.984i)31-s + (−0.5 + 0.866i)37-s + (0.766 + 0.642i)41-s + (−0.939 − 0.342i)43-s + (−0.173 − 0.984i)47-s + (−0.939 + 0.342i)49-s + 53-s + (0.939 − 0.342i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.658955825 - 0.04827068449i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.658955825 - 0.04827068449i\) |
| \(L(1)\) |
\(\approx\) |
\(1.181706780 - 0.04095793459i\) |
| \(L(1)\) |
\(\approx\) |
\(1.181706780 - 0.04095793459i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.939 + 0.342i)T \) |
| 13 | \( 1 + (0.766 + 0.642i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.173 - 0.984i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.766 + 0.642i)T \) |
| 43 | \( 1 + (-0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.173 - 0.984i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.766 - 0.642i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.939 + 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.41582714154600052694640972218, −20.849751186705900390659543420734, −19.69561206649437121281603208513, −19.27690646047642139695849478635, −18.28788856932088316543698267350, −17.73139439605656320437384271759, −16.720520762718019828467790594921, −15.98842404574722364820296402085, −15.19664472602721453780970987863, −14.515789450085571989793777387296, −13.583868199282300307374604677735, −12.687909610251427787083707153758, −12.03952496778300487408862929756, −11.17218173861575058878514145725, −10.365381017248514486232287967187, −9.25825268438718028534727432313, −8.72012307708595323733596054281, −7.884797608767451422771046938, −6.66123975460738701312565322558, −5.98000910399364917167856036997, −5.21312612051484228495953568720, −3.9618950580306812697672906088, −3.17030689678594806718646007548, −2.11270178046697340320494344517, −0.92905800046213936306166241963,
1.00600373320167197877095360989, 1.84498282101334488901521672539, 3.45481571458085422523617509783, 3.86219559906984394125278285853, 4.97564577304651997715676666125, 6.03464082194469591175442193449, 6.93961122475778833345449138571, 7.55107441270002130678809519607, 8.62057476827029254226585545161, 9.64147345948745941594870621452, 10.064688614338568118085516294713, 11.38719810314556942992161261207, 11.68673367680536428000940155809, 12.87738292788789719177750057093, 13.73377453662931265485559746488, 14.211248612550976109573101735025, 15.140049822513240870865233932175, 16.257786601122612318297399833877, 16.65958312228383096287082594555, 17.47686397324952810603404212045, 18.43354192512495302294910242750, 19.077995077008552484459431597958, 20.13316513764204119863225619112, 20.45618363323436180486930056407, 21.39698707393407532958756050728