| L(s) = 1 | + (0.342 − 0.939i)7-s + (0.766 − 0.642i)11-s + (−0.984 − 0.173i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (0.342 + 0.939i)23-s + (0.173 + 0.984i)29-s + (0.939 − 0.342i)31-s + (−0.866 − 0.5i)37-s + (0.173 − 0.984i)41-s + (0.642 + 0.766i)43-s + (0.342 − 0.939i)47-s + (−0.766 − 0.642i)49-s − i·53-s + (−0.766 − 0.642i)59-s + ⋯ |
| L(s) = 1 | + (0.342 − 0.939i)7-s + (0.766 − 0.642i)11-s + (−0.984 − 0.173i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (0.342 + 0.939i)23-s + (0.173 + 0.984i)29-s + (0.939 − 0.342i)31-s + (−0.866 − 0.5i)37-s + (0.173 − 0.984i)41-s + (0.642 + 0.766i)43-s + (0.342 − 0.939i)47-s + (−0.766 − 0.642i)49-s − i·53-s + (−0.766 − 0.642i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.818 - 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.818 - 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.573230715 - 0.4968047324i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.573230715 - 0.4968047324i\) |
| \(L(1)\) |
\(\approx\) |
\(1.170457419 - 0.1600917042i\) |
| \(L(1)\) |
\(\approx\) |
\(1.170457419 - 0.1600917042i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.342 - 0.939i)T \) |
| 11 | \( 1 + (0.766 - 0.642i)T \) |
| 13 | \( 1 + (-0.984 - 0.173i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.342 + 0.939i)T \) |
| 29 | \( 1 + (0.173 + 0.984i)T \) |
| 31 | \( 1 + (0.939 - 0.342i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.642 + 0.766i)T \) |
| 47 | \( 1 + (0.342 - 0.939i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.984 - 0.173i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.984 + 0.173i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.642 - 0.766i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.531857949527237087827054763941, −20.81667204128667823529763352883, −19.96901456875295749557695737254, −19.13653236587641831774394634124, −18.532089684257950672405950445320, −17.5014024043267220708875294602, −17.09489636910951725713414478251, −15.9539205585199698867104668245, −15.23938668801586531937182922022, −14.512962630144254207503789364189, −13.86213154586347973965047353283, −12.60426225309322866722795667685, −12.029932428387581337147583399638, −11.48246423335509837495432480566, −10.23505628300869111477114528235, −9.47818579150588492332378299041, −8.811743853877223249922317919247, −7.76966442433489815175932101299, −6.96819707866291798037908248342, −6.0405989449395816063973298534, −4.98436839698836176291849652050, −4.44580349494642334646354491899, −2.976075319145381461421320000382, −2.313849923512669324584794565966, −1.07282451413400231185070686985,
0.863269277447790596593891016683, 1.78444370315731999212705809591, 3.262439909615172210087514712606, 3.85271359042904189023365713050, 4.98445164351174664794416781611, 5.7924149661590372354523132741, 6.9090217103635725226537136977, 7.60561932235738460067965485600, 8.40074448821462353247935613440, 9.50396365607155945485380221274, 10.205608326800090892625929233980, 11.016630643937030183719238373281, 11.92003913558798786664189012339, 12.592916491616164115636967182963, 13.76589036240049833542790518301, 14.223566418361146042700064707057, 14.95430737068082211334414043761, 16.0679081794782704897854040237, 16.8848991809336139927354619494, 17.27713321565260923822052140223, 18.22507136206616457235301927419, 19.43464449996006346890847291989, 19.53007372767465173813195475237, 20.72273711306985431120299993399, 21.250299506894477227039553810281