| L(s) = 1 | + (0.173 − 0.984i)7-s + (−0.939 + 0.342i)11-s + (0.766 − 0.642i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.173 + 0.984i)23-s + (−0.766 − 0.642i)29-s + (−0.173 − 0.984i)31-s + (−0.5 − 0.866i)37-s + (0.766 − 0.642i)41-s + (0.939 − 0.342i)43-s + (0.173 − 0.984i)47-s + (−0.939 − 0.342i)49-s + 53-s + (−0.939 − 0.342i)59-s + ⋯ |
| L(s) = 1 | + (0.173 − 0.984i)7-s + (−0.939 + 0.342i)11-s + (0.766 − 0.642i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.173 + 0.984i)23-s + (−0.766 − 0.642i)29-s + (−0.173 − 0.984i)31-s + (−0.5 − 0.866i)37-s + (0.766 − 0.642i)41-s + (0.939 − 0.342i)43-s + (0.173 − 0.984i)47-s + (−0.939 − 0.342i)49-s + 53-s + (−0.939 − 0.342i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01219956354 - 0.4192718048i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01219956354 - 0.4192718048i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9105459426 - 0.1234681507i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9105459426 - 0.1234681507i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (-0.939 + 0.342i)T \) |
| 13 | \( 1 + (0.766 - 0.642i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + (-0.173 - 0.984i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.939 - 0.342i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.939 - 0.342i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (-0.766 - 0.642i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.357307906197883151634120036903, −21.15192919375862630668426079773, −20.17154830470113198435863793097, −19.12326753457827956561175886131, −18.4527529089017714311907589333, −18.08280892193247008648039309232, −16.87617834557906730529333181392, −16.05365157635290095262868352713, −15.54597587619247317621809428548, −14.578454337050861692861184520640, −13.82906803477191917396442390437, −12.8979964038663309391351288397, −12.23025520427564620782762166973, −11.20996273391342477493617843682, −10.73084787695663124021294690658, −9.46245392064450546978540424847, −8.82412597818549819890370378342, −8.08141366426975595928595759943, −7.01871371731371411074787337601, −6.11057054872922822887557173098, −5.25205104420790079703856651331, −4.49461900795819533870429081273, −3.11832588515317794316860562100, −2.48223431711947581284763982992, −1.26871233503939908348201670106,
0.0881859228282034515116028428, 1.238452220687984031342314109454, 2.26870365008196202106947709915, 3.63364323594008430742247742433, 4.09147438133771706239482645283, 5.45340452511947591795798170663, 5.989819587597079727130736472697, 7.40079029865744066964477843340, 7.74221205861446829625712782827, 8.713003023772854644296057895721, 9.90713346104936288188410347338, 10.52421804017119129375354549330, 11.11930236035638233956058282905, 12.30881688090370164137681734937, 13.10582547693469474332660824492, 13.641597195377023459225168973479, 14.68540531148548191819060153079, 15.36547152818394753570971659266, 16.233380480501264372160655925267, 17.084018055937532382813103017530, 17.66774237227127738016005105426, 18.586372165232759463839383063004, 19.311929970746757727375171357573, 20.252227491189218119349957462179, 20.889756081924647069051331466565