L(s) = 1 | + (0.923 − 0.382i)7-s + (−0.382 − 0.923i)11-s − i·13-s + (0.707 − 0.707i)19-s + (−0.382 − 0.923i)23-s + (0.923 + 0.382i)29-s + (0.382 − 0.923i)31-s + (−0.382 + 0.923i)37-s + (−0.923 + 0.382i)41-s + (−0.707 − 0.707i)43-s − i·47-s + (0.707 − 0.707i)49-s + (−0.707 + 0.707i)53-s + (0.707 + 0.707i)59-s + (−0.923 + 0.382i)61-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)7-s + (−0.382 − 0.923i)11-s − i·13-s + (0.707 − 0.707i)19-s + (−0.382 − 0.923i)23-s + (0.923 + 0.382i)29-s + (0.382 − 0.923i)31-s + (−0.382 + 0.923i)37-s + (−0.923 + 0.382i)41-s + (−0.707 − 0.707i)43-s − i·47-s + (0.707 − 0.707i)49-s + (−0.707 + 0.707i)53-s + (0.707 + 0.707i)59-s + (−0.923 + 0.382i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.806 - 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.806 - 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5049149511 - 1.541168964i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5049149511 - 1.541168964i\) |
\(L(1)\) |
\(\approx\) |
\(1.046804118 - 0.3370492601i\) |
\(L(1)\) |
\(\approx\) |
\(1.046804118 - 0.3370492601i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 7 | \( 1 + (0.923 - 0.382i)T \) |
| 11 | \( 1 + (-0.382 - 0.923i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (-0.382 - 0.923i)T \) |
| 29 | \( 1 + (0.923 + 0.382i)T \) |
| 31 | \( 1 + (0.382 - 0.923i)T \) |
| 37 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (-0.923 + 0.382i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.707 + 0.707i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.382 - 0.923i)T \) |
| 73 | \( 1 + (-0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.382 + 0.923i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.923 + 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.50506556013666760881681703249, −21.072078423115689044864218722318, −20.24881106395746077614441807617, −19.3719016037825595202760296562, −18.50581838998079930030241156080, −17.799910503479900386286610998444, −17.239414096874654515810743510758, −16.04661309152033265254329127947, −15.546775579893703771944148575425, −14.42522888036039199659647713848, −14.09453051422163966003257895181, −12.945469386114417180538664124342, −11.95348422784128971418202925717, −11.60021467405890381604595669888, −10.43822073764186890795758787991, −9.68529034164189098840884621446, −8.76653529656244849980322681238, −7.88404025334314869618758930507, −7.16871070230149816761676776839, −6.09623386992822216230714218488, −5.07133243284592217539164883834, −4.46937588082458776086175341277, −3.288111274632793611109322665694, −2.04304260206993049428455336719, −1.422674282600032737325427453229,
0.34063117043088055466434961684, 1.23108969337378045005181731021, 2.56678357679647780824923482702, 3.40590617545074757089247733528, 4.623647018923832042464256804631, 5.289778770434026517956002783213, 6.27784235894145605848333637498, 7.3425301238889902407985256239, 8.19211174839332539637848014524, 8.69129554350082560444157367698, 10.071137085418623880614776842084, 10.625888832326645382343738269135, 11.485866974522561357726633470300, 12.22533645029792189214110804011, 13.47916153215723606828517278620, 13.74837262078371741201301387385, 14.87956078559232122737885278662, 15.49426441817777081463115499221, 16.4744716957129217799033931484, 17.18842836780556022743991057543, 18.087011385082646696707527269184, 18.538562505485250033108651627007, 19.704971656079788269382670297142, 20.35845227524255005509502071312, 21.01121602489731062838211470031