Properties

Label 1-1020-1020.467-r1-0-0
Degree $1$
Conductor $1020$
Sign $-0.808 - 0.588i$
Analytic cond. $109.614$
Root an. cond. $109.614$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)11-s + i·13-s i·19-s + (0.707 + 0.707i)23-s + (0.707 + 0.707i)29-s + (0.707 + 0.707i)31-s + (0.707 − 0.707i)37-s + (−0.707 + 0.707i)41-s − 43-s i·47-s + i·49-s + 53-s i·59-s + (0.707 − 0.707i)61-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)11-s + i·13-s i·19-s + (0.707 + 0.707i)23-s + (0.707 + 0.707i)29-s + (0.707 + 0.707i)31-s + (0.707 − 0.707i)37-s + (−0.707 + 0.707i)41-s − 43-s i·47-s + i·49-s + 53-s i·59-s + (0.707 − 0.707i)61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.808 - 0.588i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1020 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.808 - 0.588i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1020\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-0.808 - 0.588i$
Analytic conductor: \(109.614\)
Root analytic conductor: \(109.614\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1020} (467, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 1020,\ (1:\ ),\ -0.808 - 0.588i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1213690909 - 0.3727650474i\)
\(L(\frac12)\) \(\approx\) \(0.1213690909 - 0.3727650474i\)
\(L(1)\) \(\approx\) \(0.8424440518 + 0.01572271920i\)
\(L(1)\) \(\approx\) \(0.8424440518 + 0.01572271920i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + (-0.707 - 0.707i)T \)
11 \( 1 + (-0.707 + 0.707i)T \)
13 \( 1 + iT \)
19 \( 1 - iT \)
23 \( 1 + (0.707 + 0.707i)T \)
29 \( 1 + (0.707 + 0.707i)T \)
31 \( 1 + (0.707 + 0.707i)T \)
37 \( 1 + (0.707 - 0.707i)T \)
41 \( 1 + (-0.707 + 0.707i)T \)
43 \( 1 - T \)
47 \( 1 - iT \)
53 \( 1 + T \)
59 \( 1 - iT \)
61 \( 1 + (0.707 - 0.707i)T \)
67 \( 1 - iT \)
71 \( 1 + (-0.707 - 0.707i)T \)
73 \( 1 + (0.707 - 0.707i)T \)
79 \( 1 + (-0.707 + 0.707i)T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 + (-0.707 + 0.707i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.7196152134793449744089432863, −20.94861275826634462722403553075, −20.25161570827456851345515508530, −19.15026709439314433456925077777, −18.74720563368563607032046006015, −17.949016772465186084202978672415, −16.922348950034628618949471973822, −16.19668567034045374072809252235, −15.42957964269992642151301883752, −14.822862537118956162313409798170, −13.626210628613516451248051822858, −13.02435446703305865493653712000, −12.249341211293632823581008151723, −11.40380426102483214632519070701, −10.300235384314974825442891068351, −9.87083471037114225275913874649, −8.55284436658780926860507366105, −8.1914555025917565278133814874, −6.97520095120514544614352686012, −5.94284270455655441090086934072, −5.487118733988685671456115847722, −4.24360297174757379877163891738, −3.03642993005948384837304326258, −2.58203777445188467790941796530, −0.998435493318008408305499064850, 0.09350330028341258628129553101, 1.3387911514533699525985371546, 2.54148401237488508349499902631, 3.47156200685056773194082244721, 4.52679772931712002966359272704, 5.2324090321113664270494472271, 6.730108484563433053176174196587, 6.91212941213540950441213730179, 8.04688057322745023895458031918, 9.11450307140969020715661965703, 9.82064797748623152881339200447, 10.60992628333848760359498990118, 11.477120583103153319793000938448, 12.427288870348768925577405805316, 13.26639923173342010420392601924, 13.78784069300649935293995259275, 14.85285706323602060489084996054, 15.66236336193098433053214331162, 16.38308371972801562777780413145, 17.1566178302642190502062632513, 17.95370272803496858343480570074, 18.79108607855333107770397182486, 19.7347592681623675394568616757, 20.07755872478067942224987921443, 21.26804829796028805358381887953

Graph of the $Z$-function along the critical line