L(s) = 1 | − i·2-s + (−0.5 + 0.866i)3-s − 4-s + (−0.866 − 0.5i)5-s + (0.866 + 0.5i)6-s + i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.5 − 0.866i)12-s + (0.866 − 0.5i)15-s + 16-s + 17-s + (−0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + ⋯ |
L(s) = 1 | − i·2-s + (−0.5 + 0.866i)3-s − 4-s + (−0.866 − 0.5i)5-s + (0.866 + 0.5i)6-s + i·8-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.5 − 0.866i)12-s + (0.866 − 0.5i)15-s + 16-s + 17-s + (−0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.884 - 0.467i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.884 - 0.467i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.09861721817 - 0.3978009299i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09861721817 - 0.3978009299i\) |
\(L(1)\) |
\(\approx\) |
\(0.5634895318 - 0.2179921483i\) |
\(L(1)\) |
\(\approx\) |
\(0.5634895318 - 0.2179921483i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - iT \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.866 - 0.5i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.318266956933355801983618174001, −21.59258096270558037000148103430, −20.17503623989207853043430122619, −19.11192377118719280925653701611, −18.902867749400238032858299473, −18.00633892587212210564379965863, −17.23375904089734527644763508767, −16.57500220509113326353211894868, −15.663477414488239193916203078544, −15.02629453884862007135211065601, −14.016753926076564590415306694863, −13.51037837652213511068018178404, −12.26325036242570887277879065866, −11.99116547135369588522296379983, −10.73177548538167352989453929190, −9.96156775177875195402935546326, −8.44583564755842088147599644457, −8.10395098998185681674627561770, −7.15261739901400874149486146107, −6.58733182798990517347018410108, −5.75110486773261115477529738313, −4.752548429658383173263299133301, −3.80553803403887630311667393829, −2.591098915060525840154785945440, −1.01412918056637916192672504616,
0.242254378357374080674363124434, 1.48733743769168128689325518317, 3.00029085408883309998077326413, 3.794950248207313375233336570576, 4.47184139477782554199725625508, 5.246174373672987440470917967434, 6.23397736020353859231628893666, 7.8306839289662540809160003392, 8.5141500823192092832447862060, 9.41089583458177543470661876055, 10.218436788300203450611849153220, 10.86591188452347307983776291158, 11.84879850413622543382091259761, 12.16233915772988128610320555840, 13.06238419879871105650740863850, 14.31568145050666571836364032683, 14.903761664999445892476562354020, 15.982556674268715534799085573042, 16.60942644182391594683095586137, 17.39195781712728883505084017567, 18.2982440302956850951670583221, 19.20087598179912020428675861988, 19.87639588782563756619798857214, 20.694042135455735802137094558533, 21.160652131490412223951448413251