L(s) = 1 | + (0.669 + 0.743i)2-s + (0.809 − 0.587i)3-s + (−0.104 + 0.994i)4-s + (0.669 − 0.743i)5-s + (0.978 + 0.207i)6-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s + (0.5 + 0.866i)12-s + (0.104 − 0.994i)15-s + (−0.978 − 0.207i)16-s + (0.669 − 0.743i)17-s + (0.913 − 0.406i)18-s + (0.809 − 0.587i)19-s + (0.669 + 0.743i)20-s + ⋯ |
L(s) = 1 | + (0.669 + 0.743i)2-s + (0.809 − 0.587i)3-s + (−0.104 + 0.994i)4-s + (0.669 − 0.743i)5-s + (0.978 + 0.207i)6-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s + (0.5 + 0.866i)12-s + (0.104 − 0.994i)15-s + (−0.978 − 0.207i)16-s + (0.669 − 0.743i)17-s + (0.913 − 0.406i)18-s + (0.809 − 0.587i)19-s + (0.669 + 0.743i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.198273200 - 0.07100242597i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.198273200 - 0.07100242597i\) |
\(L(1)\) |
\(\approx\) |
\(2.088811121 + 0.1756538539i\) |
\(L(1)\) |
\(\approx\) |
\(2.088811121 + 0.1756538539i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.669 + 0.743i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 + (0.669 - 0.743i)T \) |
| 17 | \( 1 + (0.669 - 0.743i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.104 - 0.994i)T \) |
| 31 | \( 1 + (0.669 + 0.743i)T \) |
| 37 | \( 1 + (-0.913 + 0.406i)T \) |
| 41 | \( 1 + (-0.913 - 0.406i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.913 + 0.406i)T \) |
| 53 | \( 1 + (0.669 + 0.743i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.978 + 0.207i)T \) |
| 73 | \( 1 + (-0.913 + 0.406i)T \) |
| 79 | \( 1 + (0.978 - 0.207i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.669 + 0.743i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.58254833381777549445379142962, −20.94459684113921954345510730936, −20.32989548866297864828649445229, −19.44545086140648193182913818766, −18.74410757523805452560143963809, −18.1174545058203268864499446132, −16.86107572621325037014886008903, −15.864719678888226577334019403499, −15.00149865891093226460774734076, −14.36321705106710427070057575853, −13.93191506580022105808866504202, −13.057434939293167581129374763121, −12.1673347723510529718328644915, −11.0748276271270314895912667932, −10.28021161084378513355473605519, −9.92426333873582329992776432065, −8.99008796397231023789328771193, −7.9270521246737776740384449642, −6.74089268828888294719415096820, −5.77820130457385630461461135666, −4.96490564808234793126212711403, −3.82534890829917596187521548728, −3.223899549174580253070402969347, −2.33058983286979688808884679668, −1.50154445635612905795240873963,
1.06536953760258472461639481414, 2.315319440727483895348533276558, 3.16784403740670525966812630910, 4.20795690619283350713274012249, 5.241398643623687051320259405227, 5.94653300882133459181837303597, 7.01563455388236023089225170644, 7.64647986983282380487083878446, 8.59692020056767477928007571330, 9.19656482050245108929697131642, 10.08670065849780767290362000293, 11.978855102542010159750690656605, 12.07892544880818821249977104296, 13.365280007872796594002385881153, 13.670798151975002384955613266784, 14.23649551168630173052755005690, 15.40152150571401103186837524098, 15.89044683888799168235019864099, 16.97031276612438466468732469527, 17.63569915093383197571286473513, 18.31286330079685032160900237543, 19.38593343471865305926842012124, 20.385219485553021521646548906436, 20.84477554359793700961885440066, 21.58949328274143946772083951121