Properties

Label 990.9.5.a1.a1
Order $ 2 \cdot 3^{2} \cdot 11 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{99}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Index: \(5\)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $a, b^{45}, b^{165}, b^{220}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5\times D_{99}$
Order: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^2$
$\operatorname{Aut}(H)$ $D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{99}$, of order \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times D_{99}$
Complements:$C_5$
Minimal over-subgroups:$C_5\times D_{99}$
Maximal under-subgroups:$C_{99}$$D_{33}$$D_9$

Other information

Möbius function$-1$
Projective image$C_5\times D_{99}$