Properties

Label 990.16.330.a1.a1
Order $ 3 $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(3\)
Generators: $c^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $(C_3\times C_{33}):C_{10}$
Order: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{33}:C_{10}$
Order: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}\times C_3^2:\GL(2,3)$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{33}:C_{15}$
Normalizer:$(C_3\times C_{33}):C_{10}$
Complements:$C_{33}:C_{10}$ $C_{33}:C_{10}$ $C_{33}:C_{10}$
Minimal over-subgroups:$C_{33}$$C_{15}$$C_3^2$$S_3$
Maximal under-subgroups:$C_1$
Autjugate subgroups:990.16.330.a1.b1990.16.330.a1.c1990.16.330.a1.d1

Other information

Möbius function$33$
Projective image$(C_3\times C_{33}):C_{10}$