Properties

Label 98816.d.8.c1.a1
Order $ 2^{6} \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1544}.C_8$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $b^{1544}, a^{8}b^{5932}, b^{3088}, a^{4}b^{4742}, b^{3860}, a^{2}b^{4643}, b^{32}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{6176}.C_{16}$
Order: \(98816\)\(\medspace = 2^{9} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_8^2.C_2^2$
$\operatorname{Aut}(H)$ $C_{772}.C_{96}.C_2^4$
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$C_{6176}.C_{16}$
Minimal over-subgroups:$C_{3088}:C_8$
Maximal under-subgroups:$C_{1544}:C_4$$D_{193}:C_{16}$$D_{193}:C_{16}$$C_4\times C_{16}$

Other information

Möbius function$0$
Projective image$C_{772}:C_{16}$