Properties

Label 98816.d.3088.f1.b1
Order $ 2^{5} $
Index $ 2^{4} \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a^{2}b^{4647}, b^{4632}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{6176}.C_{16}$
Order: \(98816\)\(\medspace = 2^{9} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_8^2.C_2^2$
$\operatorname{Aut}(H)$ $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_8\times C_{64}$
Normalizer:$C_8\times C_{64}$
Normal closure:$D_{193}:C_{16}$
Core:$C_4$
Minimal over-subgroups:$D_{193}:C_{16}$$C_4\times C_{16}$
Maximal under-subgroups:$C_2\times C_8$$C_{16}$$C_{16}$
Autjugate subgroups:98816.d.3088.f1.a1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$0$
Projective image$C_{1544}:C_{16}$