Properties

Label 98784.x.6.c1.a1
Order $ 2^{4} \cdot 3 \cdot 7^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_7^3:S_4$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}d^{12}e^{7}f^{2}, d^{7}e^{8}f^{6}, e^{2}f^{4}, b^{2}de^{2}f^{6}, d^{2}f, f, b^{3}e^{7}f^{3}, cd^{4}e^{7}f^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_7^3:(C_6\times S_3)$
Order: \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.A_4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^3:(C_6\times S_4)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_7^3:(C_6\times S_3)$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_7^3:(C_6\times S_4)$$D_7^3:D_6$
Maximal under-subgroups:$C_2\times C_7^3:A_4$$C_7^3:S_4$$C_7^3:S_4$$C_7^3:(C_2\times D_4)$$C_7^3:D_6$$C_2\times S_4$

Other information

Möbius function$1$
Projective image$C_7^3:(C_6\times S_4)$