Subgroup ($H$) information
Description: | $C_7^2:D_{14}$ |
Order: | \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rrr}
0 & 2 & 0 \\
4 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
5 & 6 & 1
\end{array}\right), \left(\begin{array}{rrr}
5 & 1 & 0 \\
5 & 4 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
6 & 0 & 0 \\
0 & 6 & 0 \\
5 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
Description: | $C_7^2.\GL(2,7)$ |
Order: | \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
$\operatorname{Aut}(H)$ | $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $8$ |
Möbius function | not computed |
Projective image | not computed |