Properties

Label 98784.a.21.a1.a1
Order $ 2^{5} \cdot 3 \cdot 7^{2} $
Index $ 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{49}:C_2$
Order: \(4704\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{2} \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rrr} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 6 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 6 & 1 \end{array}\right), \left(\begin{array}{rrr} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 3 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 2 & 5 & 0 \\ 5 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 3 & 3 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 5 & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7^2.\GL(2,7)$
Order: \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $F_{49}:C_2$, of order \(4704\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$21$
Möbius function not computed
Projective image not computed