Subgroup ($H$) information
Description: | $F_{49}:C_2$ |
Order: | \(4704\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{2} \) |
Index: | \(21\)\(\medspace = 3 \cdot 7 \) |
Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rrr}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
6 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
5 & 6 & 1
\end{array}\right), \left(\begin{array}{rrr}
5 & 0 & 0 \\
0 & 5 & 0 \\
3 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
2 & 5 & 0 \\
5 & 3 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
3 & 3 & 0 \\
6 & 4 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
5 & 6 & 0 \\
6 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_7^2.\GL(2,7)$ |
Order: | \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
$\operatorname{Aut}(H)$ | $F_{49}:C_2$, of order \(4704\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{2} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $21$ |
Möbius function | not computed |
Projective image | not computed |