Properties

Label 985920.a.6162.c1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 \cdot 13 \cdot 79 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:Q_{32}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6162\)\(\medspace = 2 \cdot 3 \cdot 13 \cdot 79 \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 29 & 28 \\ 32 & 50 \end{array}\right), \left(\begin{array}{rr} 11 & 50 \\ 15 & 18 \end{array}\right), \left(\begin{array}{rr} 77 & 6 \\ 65 & 2 \end{array}\right), \left(\begin{array}{rr} 39 & 39 \\ 67 & 65 \end{array}\right), \left(\begin{array}{rr} 53 & 52 \\ 63 & 35 \end{array}\right), \left(\begin{array}{rr} 78 & 0 \\ 0 & 78 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\SL(2,79):C_2$
Order: \(985920\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
Exponent: \(492960\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 79 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,79).C_2$
$\operatorname{Aut}(H)$ $D_{80}:C_4^2$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$W$$D_{80}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{160}:C_2$
Normal closure:$\SL(2,79)$
Core:$C_2$
Minimal over-subgroups:$\SL(2,79)$$C_{160}:C_2$
Maximal under-subgroups:$C_{80}$$C_5:Q_{16}$$Q_{32}$

Other information

Number of subgroups in this conjugacy class$3081$
Möbius function$1$
Projective image$\PGL(2,79)$