Subgroup ($H$) information
Description: | $C_3^2:C_6$ |
Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(10,12,13)(11,15,14), (11,14,15), (12,13)(14,15), (1,6,3)(2,9,5)(4,7,8)\rangle$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_3^3:S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $C_3:S_3$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
$W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $\He_3$ | |||
Normalizer: | $C_3^3:S_3^2$ | |||
Minimal over-subgroups: | $C_3^2\wr C_2$ | $C_3\times S_3^2$ | ||
Maximal under-subgroups: | $C_3^3$ | $C_3:S_3$ | $C_3\times S_3$ | $C_3\times S_3$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-27$ |
Projective image | $C_3^2:S_3^2$ |