Subgroup ($H$) information
| Description: | $S_3\times \He_3$ | 
| Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) | 
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $c^{3}, d, b, c^{2}e^{6}, e^{3}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $(C_3\times C_9):S_3^2$ | 
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times C_3^3:\GL(2,3)$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) | 
| $\operatorname{Aut}(H)$ | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) | 
| $W$ | $C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
Related subgroups
| Centralizer: | $C_9$ | ||
| Normalizer: | $(C_3\times C_9):S_3^2$ | ||
| Minimal over-subgroups: | $S_3\times C_9.C_3^2$ | $C_3^2:S_3^2$ | |
| Maximal under-subgroups: | $C_3\times \He_3$ | $S_3\times C_3^2$ | $C_2\times \He_3$ | 
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $1$ | 
| Projective image | $C_3^2:S_3^2$ | 
