Properties

Label 972.599.9.f1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{18}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 26 & 25 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 9 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 26 & 0 \\ 0 & 26 \end{array}\right), \left(\begin{array}{rr} 22 & 9 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 10 & 0 \\ 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^3.C_6^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times \He_3).C_2^4$
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_3^2.C_6^2$
Normal closure:$C_2\times C_3^2:C_{18}$
Core:$C_3\times C_{18}$
Minimal over-subgroups:$C_2\times C_3^2:C_{18}$$C_3^2.C_6^2$
Maximal under-subgroups:$C_3\times C_{18}$$S_3\times C_9$$S_3\times C_9$$C_2\times C_{18}$$C_6\times S_3$
Autjugate subgroups:972.599.9.f1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^3:C_6$