Properties

Label 972.599.6.f1.b1
Order $ 2 \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_{18}$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 1 & 20 \\ 0 & 26 \end{array}\right), \left(\begin{array}{rr} 1 & 9 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 10 & 0 \\ 0 & 10 \end{array}\right), \left(\begin{array}{rr} 1 & 11 \\ 12 & 25 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3.C_6^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times \He_3).C_2^4$
$\operatorname{Aut}(H)$ $C_6\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_6\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_3^3.C_6^2$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$\He_3:C_{18}$$C_3:S_3\times C_{18}$
Maximal under-subgroups:$C_3^2\times C_9$$C_3^2:C_6$$S_3\times C_9$$S_3\times C_9$
Autjugate subgroups:972.599.6.f1.a1

Other information

Möbius function$1$
Projective image$C_3^2:D_6$