Properties

Label 972.577.243.a1
Order $ 2^{2} $
Index $ 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(243\)\(\medspace = 3^{5} \)
Exponent: \(2\)
Generators: $c^{3}, d^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_6^2.C_3^3$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $\He_3:C_3^2$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_3^5:C_3.S_3^2$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Outer Automorphisms: $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_3^3.D_6$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_9:C_6^2$
Normalizer:$C_6^2.C_3^3$
Complements:$\He_3:C_3^2$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$A_4$
Maximal under-subgroups:$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^2.C_3^3$