Properties

Label 972.461.4.a1.a1
Order $ 3^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_3$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 6 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 10 & 9 \\ 9 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^3:S_3^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_3^4:C_6$$C_3^4:S_3$$C_3^4:S_3$
Maximal under-subgroups:$C_3^4$$C_3\times \He_3$$C_9:C_3^2$$C_9:C_3^2$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$

Other information

Möbius function$2$
Projective image$C_3^3:S_3^2$