Properties

Label 972.461.324.b1.a1
Order $ 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4:C_6$
Normalizer:$C_3^3:S_3^2$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_9$$C_9$$C_9$$C_9$$C_6$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_3^3:S_3^2$