Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Exponent: | \(3\) |
Generators: |
$\left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_3^3:S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $C_3^2:S_3^2$ |
Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_3^4:C_6$ | |||||||||||||
Normalizer: | $C_3^3:S_3^2$ | |||||||||||||
Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_9$ | $C_9$ | $C_9$ | $C_9$ | $C_6$ | $S_3$ | $S_3$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $0$ |
Projective image | $C_3^3:S_3^2$ |