Subgroup ($H$) information
Description: | $S_3\times C_9$ |
Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Generators: |
$\left(\begin{array}{rr}
1 & 9 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
6 & 13
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
10 & 9 \\
9 & 1
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_3^3:S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
$\operatorname{Aut}(H)$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(27\)\(\medspace = 3^{3} \) |
$W$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_3^3:S_3^2$ |