Properties

Label 972.455.108.m1.c1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rrrr} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 2 \\ 1 & 2 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^3:S_3$
Normal closure:$C_3\times \He_3$
Core:$C_3$
Minimal over-subgroups:$C_3^3$$\He_3$$\He_3$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_3$
Autjugate subgroups:972.455.108.m1.a1972.455.108.m1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_3^3:S_3^2$