Properties

Label 972.445.4.a1.a1
Order $ 3^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:C_3^2$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^3.S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^5:S_3^2$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^3.S_3^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_3\wr C_3:C_6$$C_3^3:(C_3\times C_6)$$C_3\wr C_3:C_6$
Maximal under-subgroups:$C_3\times \He_3$$C_3\times \He_3$$C_3\wr C_3$$C_9:C_3^2$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$

Other information

Möbius function$2$
Projective image$C_3^3.S_3^2$