Properties

Label 968.32.88.a1.i1
Order $ 11 $
Index $ 2^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(11\)
Generators: $a^{2}b^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{22}\times C_{44}$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Quotient group ($Q$) structure

Description: $C_2\times C_{44}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Outer Automorphisms: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{10}\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(S)$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{22}\times C_{44}$
Normalizer:$C_{22}\times C_{44}$
Complements:$C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$ $C_2\times C_{44}$
Minimal over-subgroups:$C_{11}^2$$C_{22}$$C_{22}$$C_{22}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:968.32.88.a1.a1968.32.88.a1.b1968.32.88.a1.c1968.32.88.a1.d1968.32.88.a1.e1968.32.88.a1.f1968.32.88.a1.g1968.32.88.a1.h1968.32.88.a1.j1968.32.88.a1.k1968.32.88.a1.l1

Other information

Möbius function$0$
Projective image$C_2\times C_{44}$