Properties

Label 968.23.88.b1.a1
Order $ 11 $
Index $ 2^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(11\)
Generators: $b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_{11}\times C_{44}$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{44}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Outer Automorphisms: $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:(C_2^2\times C_{10}^2)$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{11}\times C_{44}$
Normalizer:$D_{11}\times C_{44}$
Complements:$C_2\times C_{44}$
Minimal over-subgroups:$C_{11}^2$$C_{22}$$D_{11}$$D_{11}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$D_{11}\times C_{44}$