Properties

Label 966994.c.8126.a1
Order $ 7 \cdot 17 $
Index $ 2 \cdot 17 \cdot 239 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Index: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Generators: $b^{20315}, b^{1673}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{28441}:C_{34}$
Order: \(966994\)\(\medspace = 2 \cdot 7 \cdot 17^{2} \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 17$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{239}:C_{34}$
Order: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Exponent: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Automorphism Group: $F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Outer Automorphisms: $C_{14}$, of order \(14\)\(\medspace = 2 \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4063}.C_{357}.C_8.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{28441}:C_{34}$
Normalizer:$C_{28441}:C_{34}$
Complements:$C_{239}:C_{34}$
Minimal over-subgroups:$C_{28441}$$C_{17}\times C_{119}$$C_{238}$
Maximal under-subgroups:$C_{17}$$C_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-239$
Projective image$C_{239}:C_{34}$