Properties

Label 963.2.9.a1.a1
Order $ 107 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{107}$
Order: \(107\)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(107\)
Generators: $b^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $107$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3\times C_{321}$
Order: \(963\)\(\medspace = 3^{2} \cdot 107 \)
Exponent: \(321\)\(\medspace = 3 \cdot 107 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{106}\times \GL(2,3)$
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{321}$
Normalizer:$C_3\times C_{321}$
Complements:$C_3^2$
Minimal over-subgroups:$C_{321}$$C_{321}$$C_{321}$$C_{321}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$3$
Projective image$C_3^2$