Properties

Label 960.9542.80.b1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $abd^{5}, c^{12}, c^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}:D_4$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
Outer Automorphisms: $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_5:\SD_{16}$
Normalizer:$C_{60}.C_2^4$
Minimal over-subgroups:$S_3\times C_{10}$$C_3:D_4$$C_4\times S_3$$D_{12}$$C_2\times D_6$$D_{12}$$C_3:D_4$$C_4\times S_3$
Maximal under-subgroups:$C_6$$S_3$$C_2^2$
Autjugate subgroups:960.9542.80.b1.b1

Other information

Möbius function$0$
Projective image$D_{30}:C_2^3$