Properties

Label 960.9542.40.ba1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{24}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $c^{3}d^{5}, c^{8}, c^{6}, c^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{24}$
Normalizer:$D_8:D_6$
Normal closure:$C_5:C_{24}$
Core:$C_{12}$
Minimal over-subgroups:$C_5:C_{24}$$C_2\times C_{24}$$C_3\times D_8$$C_{24}:C_2$$C_{24}:C_2$$C_{24}:C_2$$C_{24}:C_2$$C_3\times Q_{16}$
Maximal under-subgroups:$C_{12}$$C_8$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$8$
Projective image$D_{30}:C_2^3$