Properties

Label 960.6296.4.d1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.S_4$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $ab, e^{2}, c, d^{5}, d^{2}e^{2}, e^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_{10}.\GL(2,\mathbb{Z}/4)$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \GL(2,\mathbb{Z}/4):C_2^2$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{20}.S_4$
Normal closure:$C_{20}.S_4$
Core:$C_5\times \SL(2,3)$
Minimal over-subgroups:$C_{20}.S_4$
Maximal under-subgroups:$C_5\times \SL(2,3)$$C_5\times Q_{16}$$C_3:C_{20}$$C_2.S_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$\GL(2,\mathbb{Z}/4)$