Subgroup ($H$) information
| Description: | $\SL(2,3)$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$b^{4}, cd^{15}, d^{15}, d^{10}$
|
| Derived length: | $3$ |
The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and solvable.
Ambient group ($G$) information
| Description: | $C_2.(C_{20}\times S_4)$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_2\times C_{20}$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Outer Automorphisms: | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4\times C_4\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_2\times C_{20}$ | |||
| Normalizer: | $C_2.(C_{20}\times S_4)$ | |||
| Minimal over-subgroups: | $C_5\times \SL(2,3)$ | $C_2\times \SL(2,3)$ | $C_2.S_4$ | $C_2.S_4$ |
| Maximal under-subgroups: | $Q_8$ | $C_6$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{20}\times S_4$ |