Properties

Label 960.6254.120.j1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b^{6}c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_2.(C_{20}\times S_4)$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4\times C_4\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$Q_8\times C_{20}$
Normal closure:$C_2^2.S_4$
Core:$C_2$
Minimal over-subgroups:$C_5\times Q_8$$C_2\times Q_8$
Maximal under-subgroups:$C_4$$C_4$$C_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_{20}\times S_4$